000878470 001__ 878470
000878470 005__ 20240712084533.0
000878470 0247_ $$2doi$$a10.1103/PhysRevApplied.14.024034
000878470 0247_ $$2ISSN$$a2331-7019
000878470 0247_ $$2ISSN$$a2331-7043
000878470 0247_ $$2Handle$$a2128/25695
000878470 0247_ $$2altmetric$$aaltmetric:88550484
000878470 0247_ $$2WOS$$aWOS:000560631000003
000878470 037__ $$aFZJ-2020-02874
000878470 082__ $$a530
000878470 1001_ $$0P:(DE-HGF)0$$aXiao, Biao$$b0
000878470 245__ $$aRelationship between Fill Factor and Light Intensity in Solar Cells Based on Organic Disordered Semiconductors: The Role of Tail States
000878470 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2020
000878470 3367_ $$2DRIVER$$aarticle
000878470 3367_ $$2DataCite$$aOutput Types/Journal article
000878470 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600689262_28605
000878470 3367_ $$2BibTeX$$aARTICLE
000878470 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878470 3367_ $$00$$2EndNote$$aJournal Article
000878470 520__ $$aThe origin of the relationship between fill factor (FF) and light intensity (I) in organic disordered-semiconductor-based solar cells is studied. An analytical model describing the balance between transport and recombination of charge carriers, parameterized with a factor, Γm, is introduced to understand the FF-I relation, where higher values of Γm correlate to larger FFs. Comparing the effects of direct and tail-state-mediated recombination on the FF-I plot, we find that, for low-mobility systems, direct recombination with constant transport mobility can deliver only a negative dependence of Γm,dir on light intensity. By contrast, tail-state-mediated recombination with trapping and detrapping processes can produce a positive Γm,t versus sun dependency. The analytical model is validated by numerical drift-diffusion simulations. To further validate our model, two material systems that show opposite FF-I behavior are studied: poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-[4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl]} (PTB7-Th):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) devices show a negative FF-I relation, while PTB7-Th:(5Z,5′Z)-5,5′-{[7,7′ -(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl)]bis(methanylylidene)}bis(3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR) devices show a positive correlation. Optoelectronic measurements show that the O-IDTBR device presents a higher ideality factor, stronger trapping and detrapping behavior, and a higher density of trap states, relative to the PC71BM device, supporting the theoretical model. This work provides a comprehensive understanding of the correlation between FF and light intensity for disordered-semiconductor-based solar cells.
000878470 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000878470 588__ $$aDataset connected to CrossRef
000878470 7001_ $$0P:(DE-HGF)0$$aCalado, Philip$$b1
000878470 7001_ $$0P:(DE-HGF)0$$aMacKenzie, Roderick C. I.$$b2
000878470 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b3
000878470 7001_ $$00000-0001-9966-4357$$aYan, Jun$$b4$$eCorresponding author
000878470 7001_ $$0P:(DE-HGF)0$$aNelson, Jenny$$b5
000878470 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.14.024034$$gVol. 14, no. 2, p. 024034$$n2$$p024034$$tPhysical review applied$$v14$$x2331-7019$$y2020
000878470 8564_ $$uhttps://juser.fz-juelich.de/record/878470/files/xiao20prapp.pdf$$yOpenAccess
000878470 8564_ $$uhttps://juser.fz-juelich.de/record/878470/files/xiao20prapp.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878470 909CO $$ooai:juser.fz-juelich.de:878470$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b3$$kFZJ
000878470 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000878470 9141_ $$y2020
000878470 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878470 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878470 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000878470 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2018$$d2020-01-17
000878470 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878470 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878470 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000878470 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878470 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000878470 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878470 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878470 920__ $$lyes
000878470 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000878470 9801_ $$aFullTexts
000878470 980__ $$ajournal
000878470 980__ $$aVDB
000878470 980__ $$aUNRESTRICTED
000878470 980__ $$aI:(DE-Juel1)IEK-5-20101013
000878470 981__ $$aI:(DE-Juel1)IMD-3-20101013