000878486 001__ 878486
000878486 005__ 20220930130248.0
000878486 0247_ $$2doi$$a10.1371/journal.pone.0237494
000878486 0247_ $$2Handle$$a2128/25527
000878486 0247_ $$2pmid$$apmid:32804972
000878486 0247_ $$2WOS$$aWOS:000563517800024
000878486 037__ $$aFZJ-2020-02875
000878486 082__ $$a610
000878486 1001_ $$0P:(DE-Juel1)131761$$aFelder, Jörg$$b0$$eCorresponding author
000878486 245__ $$aOptimization of high-channel count, switch matrices for multinuclear, high-field MRI
000878486 260__ $$aSan Francisco, California, US$$bPLOS$$c2020
000878486 3367_ $$2DRIVER$$aarticle
000878486 3367_ $$2DataCite$$aOutput Types/Journal article
000878486 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600328423_32301
000878486 3367_ $$2BibTeX$$aARTICLE
000878486 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878486 3367_ $$00$$2EndNote$$aJournal Article
000878486 520__ $$aModern magnetic resonance imaging systems are equipped with a large number of receive connectors in order to optimally support a large field-of-view and/or high acceleration in parallel imaging using high-channel count, phased array coils. Given that the MR system is equipped with a limited number of digitizing receivers and in order to support operation of multinuclear coil arrays, these connectors need to be flexibly routed to the receiver outside the RF shielded examination room. However, for a number of practical, economic and safety reasons, it is better to only route a subset of the connectors. This is usually accomplished with the use of switch matrices. These exist in a variety of topologies and differ in routing flexibility and technological implementation. A highly flexible implementation is a crossbar topology that allows to any one input to be routed to any one output and can use single PIN diodes as active elements. However, in this configuration, long open-ended transmission lines can potentially remain connected to the signal path leading to high transmission losses. Thus, especially for high-field systems compensation mechanisms are required to remove the effects of open-ended transmission line stubs. The selection of a limited number of lumped element reactance values to compensate for the for the effect of transmission line stubs in large-scale switch matrices capable of supporting multi-nuclear operation is non-trivial and is a combinatorial problem of high order. Here, we demonstrate the use of metaheuristic approaches to optimize the circuit design of these matrices that additionally carry out the optimization of distances between the parallel transmission lines. For a matrix with 128 inputs and 64 outputs a realization is proposed that displays a worst-case insertion loss of 3.8 dB.
000878486 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000878486 588__ $$aDataset connected to CrossRef
000878486 7001_ $$0P:(DE-Juel1)164356$$aChoi, Chang-Hoon$$b1
000878486 7001_ $$0P:(DE-Juel1)169784$$aKo, Yunkyoung$$b2
000878486 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b3$$ufzj
000878486 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0237494$$gVol. 15, no. 8, p. e0237494 -$$n8$$pe0237494 -$$tPLOS ONE$$v15$$x1932-6203$$y2020
000878486 8564_ $$uhttps://juser.fz-juelich.de/record/878486/files/August%202020%20Customer%20Statement-%20PAB306070.pdf
000878486 8564_ $$uhttps://juser.fz-juelich.de/record/878486/files/August%202020%20Invoice-%20PAB306070.pdf
000878486 8564_ $$uhttps://juser.fz-juelich.de/record/878486/files/journal.pone.0237494.pdf$$yOpenAccess
000878486 8564_ $$uhttps://juser.fz-juelich.de/record/878486/files/journal.pone.0237494.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878486 8564_ $$uhttps://juser.fz-juelich.de/record/878486/files/August%202020%20Customer%20Statement-%20PAB306070.pdf?subformat=pdfa$$xpdfa
000878486 8564_ $$uhttps://juser.fz-juelich.de/record/878486/files/August%202020%20Invoice-%20PAB306070.pdf?subformat=pdfa$$xpdfa
000878486 8767_ $$92020-09-16$$d2020-09-16$$eAPC$$jDeposit$$lDeposit: PLoS$$pPONE-D-19-28452$$z1595 USD, verifiziert am 16.09.2020
000878486 909CO $$ooai:juser.fz-juelich.de:878486$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000878486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131761$$aForschungszentrum Jülich$$b0$$kFZJ
000878486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164356$$aForschungszentrum Jülich$$b1$$kFZJ
000878486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000878486 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000878486 9141_ $$y2020
000878486 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878486 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2018$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878486 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-05
000878486 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000878486 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000878486 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000878486 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000878486 980__ $$ajournal
000878486 980__ $$aVDB
000878486 980__ $$aI:(DE-Juel1)INM-4-20090406
000878486 980__ $$aI:(DE-Juel1)INM-11-20170113
000878486 980__ $$aI:(DE-Juel1)VDB1046
000878486 980__ $$aAPC
000878486 980__ $$aUNRESTRICTED
000878486 9801_ $$aAPC
000878486 9801_ $$aFullTexts