000878488 001__ 878488
000878488 005__ 20220930130248.0
000878488 0247_ $$2doi$$a10.1002/aelm.202000205
000878488 0247_ $$2Handle$$a2128/25621
000878488 0247_ $$2altmetric$$aaltmetric:86083412
000878488 0247_ $$2WOS$$aWOS:000552773600001
000878488 037__ $$aFZJ-2020-02877
000878488 041__ $$aEnglish
000878488 082__ $$a621.3
000878488 1001_ $$0P:(DE-Juel1)167347$$aRosenbach, Daniel$$b0$$eCorresponding author
000878488 245__ $$aQuantum Transport in Topological Surface States of Selectively Grown Bi2Te3 Nanoribbons
000878488 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co. KG$$c2020
000878488 3367_ $$2DRIVER$$aarticle
000878488 3367_ $$2DataCite$$aOutput Types/Journal article
000878488 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599651606_20791
000878488 3367_ $$2BibTeX$$aARTICLE
000878488 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878488 3367_ $$00$$2EndNote$$aJournal Article
000878488 520__ $$aQuasi-1D nanowires of topological insulators are candidate structures in superconductor hybrid architectures for Majorana fermion based quantum computation schemes. Here, selectively grown Bi2Te3 topological insulator nanoribbons at cryogenic temperatures are investigated. The nanoribbons are defined in deep-etched Si3N4/SiO2 nano-trenches on a silicon (111) substrate followed by a selective area growth process via molecular beam epitaxy. The selective area growth is benefcial to the device quality, as no subsequent fabrication needs to be performed to shape the nanoribbons. In the diffusive transport regime of these unintentionally n-doped Bi2Te3 topological insulator nanoribbons, electron trajectories are identifed by analyzing angle dependent universal conductance fluctuation spectra. When the sample is tilted from a perpendicular to a parallel magnetic feld orientation, these high frequent conductance modulations merge with low frequent Aharonov–Bohm type oscillations originating from the topologically protected surface states along the nanoribbon perimeter. For 500 nm wide Hall bars low frequent Shubnikov–de Haas oscillations are identified in a perpendicular magnetic feld orientation. These reveal a topological, high-mobility, 2D transport channel, partially decoupled from the bulk of the material.
000878488 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000878488 588__ $$aDataset connected to CrossRef
000878488 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000878488 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000878488 7001_ $$0P:(DE-HGF)0$$aOellers, Nico$$b1
000878488 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b2$$ufzj
000878488 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b3$$ufzj
000878488 7001_ $$0P:(DE-Juel1)172619$$aKölzer, Jonas$$b4$$ufzj
000878488 7001_ $$0P:(DE-Juel1)176848$$aZimmermann, Erik$$b5$$ufzj
000878488 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b6$$ufzj
000878488 7001_ $$0P:(DE-Juel1)128848$$aBunte, Stephany$$b7$$ufzj
000878488 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b8$$ufzj
000878488 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b9$$ufzj
000878488 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b10$$ufzj
000878488 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.202000205$$gVol. 6, no. 8, p. 2000205 -$$n8$$p2000205 -$$tAdvanced electronic materials$$v6$$x2199-160X$$y2020
000878488 8564_ $$uhttps://juser.fz-juelich.de/record/878488/files/aelm.202000205.pdf$$yOpenAccess
000878488 8564_ $$uhttps://juser.fz-juelich.de/record/878488/files/aelm.202000205.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878488 8767_ $$92020-06-15$$d2020-09-10$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000878488 909CO $$ooai:juser.fz-juelich.de:878488$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000878488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167347$$aForschungszentrum Jülich$$b0$$kFZJ
000878488 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000878488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b2$$kFZJ
000878488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich$$b3$$kFZJ
000878488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172619$$aForschungszentrum Jülich$$b4$$kFZJ
000878488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176848$$aForschungszentrum Jülich$$b5$$kFZJ
000878488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b6$$kFZJ
000878488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128848$$aForschungszentrum Jülich$$b7$$kFZJ
000878488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b8$$kFZJ
000878488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b9$$kFZJ
000878488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b10$$kFZJ
000878488 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000878488 9141_ $$y2020
000878488 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878488 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878488 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878488 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2018$$d2020-02-26
000878488 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV ELECTRON MATER : 2018$$d2020-02-26
000878488 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878488 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878488 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878488 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878488 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878488 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878488 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878488 920__ $$lyes
000878488 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000878488 9201_ $$0I:(DE-Juel1)HNF-20170116$$kHNF$$lHelmholtz - Nanofacility$$x1
000878488 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000878488 9801_ $$aFullTexts
000878488 980__ $$ajournal
000878488 980__ $$aVDB
000878488 980__ $$aUNRESTRICTED
000878488 980__ $$aI:(DE-Juel1)PGI-9-20110106
000878488 980__ $$aI:(DE-Juel1)HNF-20170116
000878488 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000878488 980__ $$aAPC