001     878488
005     20220930130248.0
024 7 _ |a 10.1002/aelm.202000205
|2 doi
024 7 _ |a 2128/25621
|2 Handle
024 7 _ |a altmetric:86083412
|2 altmetric
024 7 _ |a WOS:000552773600001
|2 WOS
037 _ _ |a FZJ-2020-02877
041 _ _ |a English
082 _ _ |a 621.3
100 1 _ |a Rosenbach, Daniel
|0 P:(DE-Juel1)167347
|b 0
|e Corresponding author
245 _ _ |a Quantum Transport in Topological Surface States of Selectively Grown Bi2Te3 Nanoribbons
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH Verlag GmbH & Co. KG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599651606_20791
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Quasi-1D nanowires of topological insulators are candidate structures in superconductor hybrid architectures for Majorana fermion based quantum computation schemes. Here, selectively grown Bi2Te3 topological insulator nanoribbons at cryogenic temperatures are investigated. The nanoribbons are defined in deep-etched Si3N4/SiO2 nano-trenches on a silicon (111) substrate followed by a selective area growth process via molecular beam epitaxy. The selective area growth is benefcial to the device quality, as no subsequent fabrication needs to be performed to shape the nanoribbons. In the diffusive transport regime of these unintentionally n-doped Bi2Te3 topological insulator nanoribbons, electron trajectories are identifed by analyzing angle dependent universal conductance fluctuation spectra. When the sample is tilted from a perpendicular to a parallel magnetic feld orientation, these high frequent conductance modulations merge with low frequent Aharonov–Bohm type oscillations originating from the topologically protected surface states along the nanoribbon perimeter. For 500 nm wide Hall bars low frequent Shubnikov–de Haas oscillations are identified in a perpendicular magnetic feld orientation. These reveal a topological, high-mobility, 2D transport channel, partially decoupled from the bulk of the material.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Oellers, Nico
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jalil, Abdur Rehman
|0 P:(DE-Juel1)171826
|b 2
|u fzj
700 1 _ |a Mikulics, Martin
|0 P:(DE-Juel1)128613
|b 3
|u fzj
700 1 _ |a Kölzer, Jonas
|0 P:(DE-Juel1)172619
|b 4
|u fzj
700 1 _ |a Zimmermann, Erik
|0 P:(DE-Juel1)176848
|b 5
|u fzj
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 6
|u fzj
700 1 _ |a Bunte, Stephany
|0 P:(DE-Juel1)128848
|b 7
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 8
|u fzj
700 1 _ |a Lüth, Hans
|0 P:(DE-Juel1)128608
|b 9
|u fzj
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 10
|u fzj
773 _ _ |a 10.1002/aelm.202000205
|g Vol. 6, no. 8, p. 2000205 -
|0 PERI:(DE-600)2810904-1
|n 8
|p 2000205 -
|t Advanced electronic materials
|v 6
|y 2020
|x 2199-160X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878488/files/aelm.202000205.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878488/files/aelm.202000205.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878488
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167347
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171826
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128613
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172619
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176848
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128848
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128608
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2018
|d 2020-02-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2018
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)HNF-20170116
|k HNF
|l Helmholtz - Nanofacility
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)HNF-20170116
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21