000878492 001__ 878492
000878492 005__ 20240610121224.0
000878492 0247_ $$2doi$$a10.1021/acs.jpcb.0c04846
000878492 0247_ $$2ISSN$$a1089-5647
000878492 0247_ $$2ISSN$$a1520-5207
000878492 0247_ $$2ISSN$$a1520-6106
000878492 0247_ $$2Handle$$a2128/25622
000878492 0247_ $$2altmetric$$aaltmetric:88703568
000878492 0247_ $$2pmid$$apmid:32790396
000878492 0247_ $$2WOS$$aWOS:000569371200002
000878492 037__ $$aFZJ-2020-02881
000878492 041__ $$aEnglish
000878492 082__ $$a530
000878492 1001_ $$0P:(DE-HGF)0$$aSkóra, Tomasz$$b0
000878492 245__ $$aMacromolecular Crowding: How Shape and Interactions Affect Diffusion
000878492 260__ $$aWashington, DC$$bSoc.$$c2020
000878492 3367_ $$2DRIVER$$aarticle
000878492 3367_ $$2DataCite$$aOutput Types/Journal article
000878492 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599652519_20793
000878492 3367_ $$2BibTeX$$aARTICLE
000878492 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878492 3367_ $$00$$2EndNote$$aJournal Article
000878492 520__ $$aA significant fraction of the cell volume is occupied by various proteins, polysaccharides, nucleic acids, etc., which considerably reduces the mobility of macromolecules. Theoretical and experimental work so far have mainly focused on the dependence of the mobility on the occupied volume, while the effect of a macromolecular shape received less attention. Herein, using fluorescence correlation spectroscopy (FCS) and Brownian dynamics (BD) simulations, we report on a dramatic slowdown of tracer diffusion by cylindrically shaped double-stranded (ds) DNAs (16 nm in length). We find, for instance, that the translational diffusion coefficient of a streptavidin tracer is reduced by about 60% for a volume fraction of dsDNA as low as just 5%. For comparison, for a spherical crowder (Ficoll70) the slowdown is only 10% at the same volume fraction and 60% reduction occurs at a volume fraction as high as 35%. BD simulations reveal that this reduction can be attributed to a larger volume excluded to a tracer by dsDNA particles, as compared with spherical Ficoll70 at the same volume fraction, and to the differences in the tracer–crowder attractive interactions. In addition, we find using BD simulations that rotational diffusion of dsDNA is less affected by the crowder shape than its translational motion. Our results show that diffusion in crowded systems is determined not merely by the occupied volume fraction, but that the shape and interactions can determine diffusion, which is relevant to the diverse intracellular environments inside living cells.
000878492 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000878492 588__ $$aDataset connected to CrossRef
000878492 7001_ $$0P:(DE-HGF)0$$aVaghefikia, Farzaneh$$b1
000878492 7001_ $$0P:(DE-Juel1)131961$$aFitter, Jörg$$b2$$eCorresponding author$$ufzj
000878492 7001_ $$0P:(DE-Juel1)159264$$aKondrat, Svyatoslav$$b3$$eCorresponding author
000878492 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.0c04846$$gp. acs.jpcb.0c04846$$n35$$p7537–7543$$tThe journal of physical chemistry <Washington, DC> / B$$v124$$x1520-5207$$y2020
000878492 8564_ $$uhttps://juser.fz-juelich.de/record/878492/files/acs.jpcb.0c04846.pdf$$yOpenAccess
000878492 8564_ $$uhttps://juser.fz-juelich.de/record/878492/files/acs.jpcb.0c04846.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878492 909CO $$ooai:juser.fz-juelich.de:878492$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131961$$aForschungszentrum Jülich$$b2$$kFZJ
000878492 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000878492 9141_ $$y2020
000878492 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27
000878492 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878492 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878492 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2018$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000878492 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000878492 920__ $$lyes
000878492 9201_ $$0I:(DE-Juel1)IBI-6-20200312$$kIBI-6$$lZelluläre Strukturbiologie$$x0
000878492 9801_ $$aFullTexts
000878492 980__ $$ajournal
000878492 980__ $$aVDB
000878492 980__ $$aUNRESTRICTED
000878492 980__ $$aI:(DE-Juel1)IBI-6-20200312
000878492 981__ $$aI:(DE-Juel1)ER-C-3-20170113