000878493 001__ 878493
000878493 005__ 20240712112911.0
000878493 0247_ $$2doi$$a10.1016/j.compchemeng.2020.106920
000878493 0247_ $$2ISSN$$a0098-1354
000878493 0247_ $$2ISSN$$a1873-4375
000878493 0247_ $$2Handle$$a2128/25864
000878493 0247_ $$2WOS$$aWOS:000555539300008
000878493 037__ $$aFZJ-2020-02882
000878493 082__ $$a660
000878493 1001_ $$0P:(DE-HGF)0$$aPloch, Tobias$$b0
000878493 245__ $$aSimulation of differential-algebraic equation systems with optimization criteria embedded in Modelica
000878493 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000878493 3367_ $$2DRIVER$$aarticle
000878493 3367_ $$2DataCite$$aOutput Types/Journal article
000878493 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610473212_19940
000878493 3367_ $$2BibTeX$$aARTICLE
000878493 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878493 3367_ $$00$$2EndNote$$aJournal Article
000878493 520__ $$aDifferential-algebraic equations with embedded optimization criteria (DAEO) are a class of mathematical models for underdetermined differential-algebraic equation (DAE) systems with less algebraic equations than algebraic variables. The algebraic variables may be calculated as the solution of an embedded (non)linear program, yielding a DAEO system. An example for DAEOs is the dynamic flux balance analysis (DFBA) approach, where the formulation of metabolic reaction networks leads to an underdetermined equation system for the intracellular fluxes that are assumed to behave optimally with respect to some cell-specific optimization criterion.We present a toolbox that allows formulation of DAEOs in the object-oriented Modelica modeling language. The solution method is based on substituting the embedded optimization problem with its first-order Karush-Kuhn-Tucker conditions to obtain a nonsmooth DAE system that can be simulated by a root-finding DAE solver. One nonlinear example and two examples based on DFBA demonstrate the performance of the toolbox.
000878493 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x0
000878493 588__ $$aDataset connected to CrossRef
000878493 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b1$$ufzj
000878493 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b2
000878493 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b3
000878493 7001_ $$0P:(DE-HGF)0$$aHannemann-Tamás, Ralf$$b4$$eCorresponding author
000878493 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2020.106920$$gVol. 140, p. 106920 -$$p106920 -$$tComputers & chemical engineering$$v140$$x0098-1354$$y2020
000878493 8564_ $$uhttps://juser.fz-juelich.de/record/878493/files/Ploch%20et%20al%20Revision-1.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000878493 8564_ $$uhttps://juser.fz-juelich.de/record/878493/files/Ploch%20et%20al%20Revision-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000878493 909CO $$ooai:juser.fz-juelich.de:878493$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878493 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b1$$kFZJ
000878493 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b2$$kFZJ
000878493 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b3$$kFZJ
000878493 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x0
000878493 9141_ $$y2020
000878493 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2018$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878493 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000878493 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000878493 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000878493 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x1
000878493 9801_ $$aFullTexts
000878493 980__ $$ajournal
000878493 980__ $$aVDB
000878493 980__ $$aI:(DE-Juel1)IBG-1-20101118
000878493 980__ $$aI:(DE-Juel1)IEK-10-20170217
000878493 980__ $$aUNRESTRICTED
000878493 981__ $$aI:(DE-Juel1)ICE-1-20170217