001     878493
005     20240712112911.0
024 7 _ |a 10.1016/j.compchemeng.2020.106920
|2 doi
024 7 _ |a 0098-1354
|2 ISSN
024 7 _ |a 1873-4375
|2 ISSN
024 7 _ |a 2128/25864
|2 Handle
024 7 _ |a WOS:000555539300008
|2 WOS
037 _ _ |a FZJ-2020-02882
082 _ _ |a 660
100 1 _ |a Ploch, Tobias
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Simulation of differential-algebraic equation systems with optimization criteria embedded in Modelica
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610473212_19940
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Differential-algebraic equations with embedded optimization criteria (DAEO) are a class of mathematical models for underdetermined differential-algebraic equation (DAE) systems with less algebraic equations than algebraic variables. The algebraic variables may be calculated as the solution of an embedded (non)linear program, yielding a DAEO system. An example for DAEOs is the dynamic flux balance analysis (DFBA) approach, where the formulation of metabolic reaction networks leads to an underdetermined equation system for the intracellular fluxes that are assumed to behave optimally with respect to some cell-specific optimization criterion.We present a toolbox that allows formulation of DAEOs in the object-oriented Modelica modeling language. The solution method is based on substituting the embedded optimization problem with its first-order Karush-Kuhn-Tucker conditions to obtain a nonsmooth DAE system that can be simulated by a root-finding DAE solver. One nonlinear example and two examples based on DFBA demonstrate the performance of the toolbox.
536 _ _ |a 583 - Innovative Synergisms (POF3-583)
|0 G:(DE-HGF)POF3-583
|c POF3-583
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 1
|u fzj
700 1 _ |a Wiechert, Wolfgang
|0 P:(DE-Juel1)129076
|b 2
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 3
700 1 _ |a Hannemann-Tamás, Ralf
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.compchemeng.2020.106920
|g Vol. 140, p. 106920 -
|0 PERI:(DE-600)1499971-7
|p 106920 -
|t Computers & chemical engineering
|v 140
|y 2020
|x 0098-1354
856 4 _ |u https://juser.fz-juelich.de/record/878493/files/Ploch%20et%20al%20Revision-1.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/878493/files/Ploch%20et%20al%20Revision-1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:878493
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129081
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-583
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Innovative Synergisms
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT CHEM ENG : 2018
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21