001     878529
005     20240711085704.0
024 7 _ |a 10.1016/j.jpowsour.2020.228770
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/25599
|2 Handle
024 7 _ |a altmetric:89044952
|2 altmetric
024 7 _ |a WOS:000589933500001
|2 WOS
037 _ _ |a FZJ-2020-02892
082 _ _ |a 620
100 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 0
|e Corresponding author
245 _ _ |a Post-test characterization of a solid oxide fuel cell after more than 10 years of stack testing
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601281761_11440
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A short stack composed of two layers with anode-supported SOFCs was operated galvanostatically for 100,000 h. The operating temperature was 700 °C, the current density 0.5 A cm−2 and humidified hydrogen and ambient air were used as gases. Over time, the degradation slope varied and the overall voltage degradation finally amounted to 0.5% per 1000 h. After dismantling the stack all relevant components were post-test analyzed. Here we report on our cell findings. The Ni/8YSZ support, the 8YSZ electrolyte and the perovskitic cathode contact layer appear nearly intact after 11 years. Most of the observed changes/interactions can be attributed to the anode (Ni/8YSZ), the barrier layer (GDC) and the cathode (LSCF). Close to the barrier layer, the cathode is fragmented, elementally disintegrated and Cr poisoning was detected. The GDC also shows some fragmentation close to the cathode and some interaction with chromium. Elements from both layers, the cathode and the barrier, interdiffuse to a certain amount. The fuel electrode displays some foreign phase formation consisting of manganese and aluminium. Additionally, and this was found for the first time in a solid oxide fuel cell stack, Ni enrichment in the anode was observed.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 1
|u fzj
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 2
700 1 _ |a Zischke, Sebastian
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.jpowsour.2020.228770
|g Vol. 478, p. 228770 -
|0 PERI:(DE-600)1491915-1
|p 228770 -
|t Journal of power sources
|v 478
|y 2020
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/878529/files/OAD0000063180.pdf
856 4 _ |u https://juser.fz-juelich.de/record/878529/files/1-s2.0-S0378775320310740-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/878529/files/1-s2.0-S0378775320310740-mmc1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/878529/files/Post%20test%20F1002-97_20200803.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/878529/files/1-s2.0-S0378775320310740-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/878529/files/1-s2.0-S0378775320310740-mmc1.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/878529/files/Post%20test%20F1002-97_20200803.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/878529/files/OAD0000063180.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:878529
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159368
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21