000878547 001__ 878547
000878547 005__ 20240610121225.0
000878547 0247_ $$2doi$$a10.1103/PhysRevResearch.2.033275
000878547 0247_ $$2Handle$$a2128/25592
000878547 0247_ $$2altmetric$$aaltmetric:88608803
000878547 0247_ $$2WOS$$aWOS:000604157200003
000878547 037__ $$aFZJ-2020-02906
000878547 082__ $$a530
000878547 1001_ $$0P:(DE-Juel1)169926$$aQi, Kai$$b0
000878547 245__ $$aRheotaxis of spheroidal squirmers in microchannel flow: Interplay of shape, hydrodynamics, active stress, and thermal fluctuations
000878547 260__ $$aCollege Park, MD$$bAPS$$c2020
000878547 3367_ $$2DRIVER$$aarticle
000878547 3367_ $$2DataCite$$aOutput Types/Journal article
000878547 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617693471_23616
000878547 3367_ $$2BibTeX$$aARTICLE
000878547 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878547 3367_ $$00$$2EndNote$$aJournal Article
000878547 520__ $$aMicroswimmers exposed to microchannel flows exhibit an intriguing coupling between propulsion, shape, hydrodynamics, and flow which gives rise to distinct swimming behaviors. We employ a generic coarse-grained model of prolate spheroidal microswimmers, denoted as squirmers, exposed to channel flow to shed light onto their transport properties. The embedding fluid is implemented by the multiparticle collision dynamics approach (MPC), a particle-based mesoscale simulation method, which includes thermal fluctuations. Specifically, the influence of swimmer shape—spherical vs spheroidal—, active stress—pusher, ciliate, puller—, and thermal fluctuations on their rheotactic behavior is analyzed. The microswimmers accumulate at the confining walls at very low flow rates. With increasing flow strength, squirmers are depleted from the walls, and at high flow rates are also depleted from the channel center. The squirmers show pronounced cross-channel swimming between the confining walls with mixed oscillating and rotational motions due to thermal fluctuations. This strongly affects their rheotactic behavior. In particular, spherical pullers and ciliates swim upstream, whereas spherical pushers essentially swim downstream. The anisotropic shape of spheroidal squirmers enhances wall and center depletion and the alignment of the propulsion direction parallel to the flow, which leads to preferred downstream swimming for all active stresses. This emphasizes the importance of swimmer shape and hydrodynamic wall interactions on the transport properties of a microswimmer such as Volvox and Opalina, for example.
000878547 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000878547 536__ $$0G:(DE-Juel1)jias21_20191101$$aCollective Dynamics of Microswimmers (jias21_20191101)$$cjias21_20191101$$fCollective Dynamics of Microswimmers$$x1
000878547 588__ $$aDataset connected to CrossRef
000878547 7001_ $$00000-0002-2563-7855$$aAnnepu, Hemalatha$$b1
000878547 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$eCorresponding author
000878547 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b3$$eCorresponding author
000878547 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.2.033275$$gVol. 2, no. 3, p. 033275$$n3$$p033275$$tPhysical review research$$v2$$x2643-1564$$y2020
000878547 8564_ $$uhttps://juser.fz-juelich.de/record/878547/files/PhysRevResearch.2.033275.pdf$$yOpenAccess
000878547 8564_ $$uhttps://juser.fz-juelich.de/record/878547/files/PhysRevResearch.2.033275.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878547 909CO $$ooai:juser.fz-juelich.de:878547$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169926$$aForschungszentrum Jülich$$b0$$kFZJ
000878547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000878547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b3$$kFZJ
000878547 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000878547 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000878547 9141_ $$y2020
000878547 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878547 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878547 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000878547 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000878547 9801_ $$aFullTexts
000878547 980__ $$ajournal
000878547 980__ $$aVDB
000878547 980__ $$aI:(DE-Juel1)IBI-5-20200312
000878547 980__ $$aI:(DE-82)080012_20140620
000878547 980__ $$aUNRESTRICTED
000878547 981__ $$aI:(DE-Juel1)IAS-2-20090406