PHYSICAL REVIEW RESEARCH 2, 033275 (2020)

Rheotaxis of spheroidal squirmers in microchannel flow: Interplay of shape, hydrodynamics, active

stress, and thermal fluctuations
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Microswimmers exposed to microchannel flows exhibit an intriguing coupling between propulsion, shape,
hydrodynamics, and flow which gives rise to distinct swimming behaviors. We employ a generic coarse-grained
model of prolate spheroidal microswimmers, denoted as squirmers, exposed to channel flow to shed light onto
their transport properties. The embedding fluid is implemented by the multiparticle collision dynamics approach
(MPC), a particle-based mesoscale simulation method, which includes thermal fluctuations. Specifically, the
influence of swimmer shape—spherical vs spheroidal—, active stress—pusher, ciliate, puller—, and thermal
fluctuations on their rheotactic behavior is analyzed. The microswimmers accumulate at the confining walls at
very low flow rates. With increasing flow strength, squirmers are depleted from the walls, and at high flow rates
are also depleted from the channel center. The squirmers show pronounced cross-channel swimming between the
confining walls with mixed oscillating and rotational motions due to thermal fluctuations. This strongly affects
their rheotactic behavior. In particular, spherical pullers and ciliates swim upstream, whereas spherical pushers
essentially swim downstream. The anisotropic shape of spheroidal squirmers enhances wall and center depletion
and the alignment of the propulsion direction parallel to the flow, which leads to preferred downstream swimming
for all active stresses. This emphasizes the importance of swimmer shape and hydrodynamic wall interactions

on the transport properties of a microswimmer such as Volvox and Opalina, for example.
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I. INTRODUCTION

The swimming behavior of motile microorganisms is deter-
mined by the response to external fields such as gravity, chem-
ical or thermal gradients, geometrical restrictions, or flow
fields. The reaction to specific fields, e.g., chemical or thermal
gradients, requires sensing [1-3] and adaptation, whereas
responses to other fields depend upon mechanical forces and
torques [1,3,4], e.g., external flows. A broad spectrum of
microorganisms is habitually exposed to flows. Biological
microswimmers, such as spermatozoa, swim in the oviduct,
bacteria populate the human gastrointestinal tract, pathogens
move along blood vessels [1,5-8], and phytoplankton in
oceans and lakes are exposed to turbulent fluid motion [9].
From a technological perspective, microfluidic devices open a
route to control microbial spreading with far-reaching impact
in medical and technical applications [4,8,10,11]. In addition,
synthetic microswimmers are being designed with the goal to
transport cargo, e.g., to serve as drug carriers in human blood
vessels. In all these cases—specifically for the rational design
of microfluidic devices and synthetic swimmers—a detailed
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understanding of the behavior of such microswimmers in
channel flows is desirable or even indispensable.

The presence of confinement and walls fundamentally
alters the swimming behavior of microorganisms. Recent
experimental [8,9,12—-16] and theoretical studies [5-7,17-22]
provide insight into the behavior of eukaryotic and prokary-
otic cells next to walls. In particular, Escherichia coli bacteria
[5,21,23-26] and spermatozoa [27-29] swim in circles adja-
cent to walls due to hydrodynamic interactions [12,30,31]. In
addition, steric interactions [12,26,32] and the flagella them-
selves influence the swimming behavior [8]. Microswimmers
strongly respond to flow fields. A paradigmatic example is
E. coli bacteria, which exhibit positive rheotaxis (upstream
swimming) in channel flows [13,16,17,33-35] and are able
to invade medical devices [16].

These studies provide valuable insight into various as-
pects of swimming of biological microorganisms in the
vicinity of walls and under flow. In general, the swimming
behavior depends on the characteristics of the microswim-
mer itself, namely, its shape and generated flow field. Typ-
ically, self-propelled particles are hydrodynamically classi-
fied as pushers—where thrust is generated at the rear, e.g.,
E. coli—, pullers—with thrust generated in the front part
of the cell, e.g., Chlamydomonas Reinhardtii—, or ciliates,
e.g., Volvox and Opalina [36,37]. Most studies on swimming
behavior in microchannel flows have been performed for
pushers, specifically, E. coli [5-7,12,13,16,17,21]. Here their
anisotropic shape and the chirality of their flagellar bundle
is considered to be responsible for positive rheotaxis and
migration in the vorticity direction of the flow (vorticity
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FIG. 1. Sketch of a spheroidal squirmer in a channel exposed to
pressure-driven flow.

migration) [6,13,16,33]. In comparison, little is known about
the nonequilibrium swimming behavior of pullers and ciliates,
aside from some studies on phytoplankton cells [9] and on
Dunaliella primolecta, a puller with internal rotation, which
exhibits swimming along the vorticity direction in shear flow
[38].

The interplay of flow, confinement, and propulsion mech-
anism is even more subtle for synthetic microswimmers.
Phoretic microswimmers display rheotaxis and upstream
swimming [39,40], and their rheotactic behavior can be
controlled by hydrodynamic forces, chemical catalysis, and
acoustic propulsion [40]. Moreover, catalytic Janus particles
in channel flow exhibit vorticity migration [41], underlining
the complex behavior emerging due to confinement, chemical
gradients, and external flow.

Insight into the intriguing properties of microswimmers in
flows can be obtained by computer simulations [42]. Here
we apply a hybrid simulation approach, combining the mul-
tiparticle collision dynamics (MPC) method for the fluid,
with a coarse-grained representation of the microswimmer—
a squirmer [43-53]—to study the properties of elongated
microswimmers in channel flow. MPC is a particle-based
mesoscale hydrodynamics simulation approach for fluids
[54-58], which can efficiently be implemented in simulations
on graphics processing units (GPUs) [59]. A squirmer is
a spheroidal colloid with a prescribed slip velocity on its
surface. It has originally been introduced to describe ciliated
microswimmers such as Paramecia and Volvox [43,60]. It is
currently employed to studies of a broad class of microswim-
mers, both biological and synthetic. A squirmer is typically
characterized by two modes, accounting for its swimming
velocity and its active stress. The latter distinguishes between
pushers, pullers, and ciliates (often denoted as neutral squirm-
ers) [45,49,52,53,61]. Fluid and squirmers are confined in a
channel of two parallel no-slip walls and periodic boundary
conditions in the other spatial dimensions (Fig. 1). An applied
constant force on the fluid particles gives rise to a parabolic
flow profile (Poiseuille flow) [62,63]. We consider various
fluid velocities, different active stresses, and two particle
aspect ratios.

At low flow velocities, our simulations show significant
wall accumulation of the squirmers independent of their active
stress but with a stress-specific preferred alignment, as is
well established [5,19,50,61,64—68]. Increasing flow leads to
swimmer depletion at walls and at high shear rates addition-
ally to depletion in the channel center, in agreement with
previous observations in simulations, theory, and experiments

[14,69,70]. The squirmers continuously traverse the channel
from one wall to the other and back, with the propulsion
direction showing oscillatory and rotational motion, which
is reminiscent of the trajectories of athermal self-propelled
particles (SPP) [7]. However, thermal fluctuations destroy
the theoretically predicted stable trajectories, fixed points,
and limit cycles. This severely changes the squirmers’ rheo-
tactic behavior, and spherical pushers predominantly swim
downstream rather than upstream, in contrast to analytical
predictions at low flow rates [7]. In contrast, spherical ciliates
and pullers exhibit upstream swimming next to walls for a
wide range of flow rates. The anisotropic shape of spheroidal
squirmers affects the rheotactic behavior, and squirmers swim
predominately downstream, independent of the active stress.
Hence, wall hydrodynamic interactions and shape determine
the rheotactic and swimming behavior of squirmer-type mi-
croswimmers.

The paper is organized as follows. Section II briefly
summarizes theoretical predictions for simple athermal self-
propelled point particles in channel flow. The microswimmer
model and the simulation approach are introduced in Sec. III.
Section IV presents the results for spherical squirmers and
Sec. V those of spheroidal squirmers. The results are dis-
cussed and conclusions are provided in Sec. VI.

II. MICROSWIMMER IN POISEUILLE
FLOW—THEORETICAL BACKGROUND

To illustrate certain basic features of microswimmers in
Poiseuille flow, we briefly review the behavior of a confined,
athermal SPP in a parabolic flow field in two dimensions [7].
The translational equation of motion of the particle position
r=r(cos¢,sing)’ is

r(1) = Uoe(t) + vy(1), ey

where U, is the swimming velocity, e the propulsion di-
rection (|e| = 1), and vy = 4u,,(H/2 — y)(H/2 + y)e,/L? the
unperturbed position-dependent fluid flow velocity in the x
direction (|e,| = 1) with no-slip lines located at y = +£H/2.
The orientation e changes in response to the local vorticity,
R =V xvy,as

et) =12 x e = 1Qe,, )

with Q = || and e, the unit vector along ¢ in polar coordi-
nates. In particular, the equations of motion for the angle ¢
and the y coordinate are

4u

¢ = H—;”y, y =Upsing, A3)

or, written as a second-order differential equation,

4umU0
2

h— sing = 0. 4
¢ =~z siné “
This is the equation of a mathematical pendulum with a
stable fixed point at ¢ = m. The integral of motion is the

(normalized) energy

E= Um0y cosg+ 1 (5)
= COS .
U()sz
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FIG. 2. Phase space (y-¢) of a confined self-propelled particle
(SPP) in Poiseuille flow for (a) u,,/Uy = 5/4 and (b) u,,/Uy = 5.
The color code designates the various values of E of Eq. (5). White
lines are “flow” lines with arrows indicating the flow direction. The
black line is the separatrix, separating rotational from oscillating
trajectories.

Figure 2 illustrates the phase space (y-¢) for various values
of the conserved quantity E, with its two parts—oscillating
and rotational trajectories—separated by the separatrix (£ =
2) and the unstable fixed point at X = (¢, y) = (0, 0), equiva-
lently, X = (2m, 0). For E < 2, a SPP exhibits an oscillatory
motion, denoted as swinging in Ref. [7], where 0 < ¢ < 2.
The covered range of angles and the displacement along y
depends on the value of E. The value E = 0 corresponds
to the stable fixed point X = (mr, 0), with straight upstream
motion in the center between the walls for u,, /Uy < 1 and
downstream motion for u,,/Uy > 1. In case of E > 2, the
rotational regime, ¢ covers the full range of possible val-
ues 0 < ¢ < 2m; this is often denoted as tumbling regime
[7]. More generally, a SPP swims upstream, x/Uy < 0, for
un/Up < 1 — E, and downstream for u,, /Uy > 1 — E.

The simple SPP model yields deterministic trajectories due
to the absence of thermal fluctuations. Moreover, there is no
wall accumulation due to lack of hydrodynamic and steric
wall interactions, whereas wall accumulation is a hallmark
of active matter and microswimmers [1,5,17,27,66,71-75].
Taking hydrodynamic wall interactions into account within

the force-dipole approximation, the fixed point X is found to
be unstable for pushers and stable for pullers [7].

Moreover, a confined slender-body swimmer without hy-
drodynamic wall interactions has been considered in presence
of thermal fluctuations [19]. The slender-particle rotation
includes contributions from the imposed flow via Jeffery’s
equation [76] and rotational diffusion. The impenetrability
of the walls is taken into account by the condition of a
zero normal component of the translation flux at a wall [19].
This approach yields wall accumulation, swimmer depletion
in the channel center, and near-wall upstream swimming by
shear alignment of the particles within the accumulation layer
adjacent to a wall. This led to the conclusion that particle-wall
hydrodynamic interactions are not necessary to explain these
phenomena [69].

In addition, the rheotactic properties of athermal spherical
diffusiophoretic Janus-type active particles have been ana-
lyzed [35]. Accounting for the propulsion mechanism via an
effective slip velocity, the transport of squirmers and catalytic
Janus particles is considered, wherein the latter case, the
solute (fuel) concentration is taken into account explicitly.
Rheotactic behavior may emerge via self-trapping near a
hard wall by auto-chemoattraction of the produced chemicals
[35,77]. Swimmer rotation and alignment by flow, combined
with the solute concentration field, then leads to locking of the
propulsion direction in the shear-gradient plane and upstream
or downstream swimming at a steady height above the wall.
Positive rheotaxis can be achieved by tailoring the surface
chemistry of a catalytically active Janus particle [35].

III. MODELS FOR MICROSWIMMER AND FLUID
A. Squirmer

A squirmer is modeled as a prolate spheroidal rigid body
of mass M with the prescribed surface velocity [49,52],

usq = —Bi(e; - e)(1 + B)e, (6)

in terms of the spheroidal coordinates (¢, T, ¢). They are
related with the Cartesian coordinates according to

x=cy12—1y1—"¢%cosg,
y=cy12—1y/1—{2%sing, @)

x =ct¢,

wherec = /b2 — b2, -1 < ¢ < 1,1 <7 <00,and0 < ¢ <
2m; by and b, denote the length of the minor and major
semiaxis of the prolate spheroid. All points with 7 = 79 =
b, /c lie on the spheroid’s surface. The propulsion velocity Uy
is related with the coefficient By via [49]

Up = By 7o[t0 — (15 — 1) coth™" 7). 8)

The coefficient 8 accounts for the active stress [45,49], where
B < 0 corresponds to a pusher, 8 > 0 to a puller, and § =0
to a ciliate. A sphere of radius R follows for b, = b, = R.

A more general representation of the flow field, including
infinitely many squirming modes, is presented in Ref. [78].
As a consequence, the swim velocity and active stress of a
spheroidal squirmer depend not only on B; and B;, respec-
tively, but include contributions from further modes.
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In general, the propulsion direction e, expressed in spheri-
cal coordinates, is

e = (cos¢sin9,sin¢sin9,cos@)T, ©)]

with the azimuthal angle 0 < ¢ < 27 and the polar angle 0 <
6 < m. The solution of the rigid-body equations of motion
of a squirmer is described in Refs. [49,52], as well as in the
Supplemental Material [79].

B. Multiparticle collision dynamics

In MPC, the fluid is represented by point particles of equal
mass m undergoing subsequent streaming and collision steps
[54-56]. Flow is induced by a gravitational force acting on
every fluid particle along the x axis of the Cartesian reference
frame (Fig. 1) [56,80]. In the streaming step, the fluid par-
ticles move ballistically transverse to the flow direction and
experience a constant force along the flow direction during
a time interval /s, denoted as collision time [63]. For the
collision step, we employ the stochastic rotation dynamics
(SRD) version of MPC with angular momentum conservation
(MPC-SRD+a) [57,58,81], where particles are sorted into
the cells of a cubic lattice of lattice constant a, and their
relative velocities, with respect to the center-of-mass velocity
of each cell, are rotated around a randomly oriented axis by a
fixed angle «. For every cell, mass, momentum, and angular
momentum are conserved. Since energy is not conserved in
the collision step, we apply the Maxwell-Boltzmann scaling
approach, a cell-level canonical thermostat at temperature 7'
[82,83]. The latter ensures Maxwellian distributed velocities.
Partition of the system into collision cells leads to violation of
Galilean invariance, which is reestablished by a random shift
of the collision-cell lattice at every collision step [84,85]. The
MPC algorithm is highly parallel, hence we implement it on a
graphics processing unit (GPU) for a high-performance gain
[59]. Further details are described in Ref. [79].

C. Wall interactions

No-slip boundary conditions at the walls are implemented
for the MPC fluid by the bounce-back rule and phantom
wall particles [62,63]. The repulsive wall interactions of a
squirmer are captured by a truncated Lennard-Jones potential
for the closest distance of a point on the squirmer surface and
the wall. This is straightforward for a sphere but somewhat
more demanding for a spheroid. Details are presented in
Refs. [49,52,79]. The wall potential allows us to control the
squirmer-wall distance. If not otherwise stated, we set the
closest approach to approximately 1.4a, which is roughly
40% of the sphere radius and 20% of the spheroid major
semiaxis. This insures sufficient fluid between squirmer and
wall, and the emergence of a suitable flow field within the
MPC approach. Simulation studies of passive spherical col-
loids indicate that for such close wall approaches lubrication
forces are already significant, specifically for the dynamics
normal to the wall [86]. However, the transport parallel to the
wall is determined by far-field wall hydrodynamic interactions
[67].

D. Parameters

The mean number of MPC particles per collision cell is
(N.;) = 10—-corresponding to the mass density p = m(N,) =
10m/a’—, the rotation angle o = 130°, and the time step
h = 0.05\/ma?/(kgT), which yields a fluid viscosity of n =
7.2,/ mkgT /a*; kg is the Boltzmann constant and T is the
temperature.

Spherical squirmers of radius R = 3.6a = 0 /2, where
o is the diameter, and spheroidal squirmers with b, =
6a and b, = 3a (aspect ratio b,/b, =2) are considered,
which are neutrally buoyant, i.e., M = (47 /3)b*b.p. We
set Bj = 0.05/kgT /m, which corresponds to the swimming
velocity Uy = 2B;/3 = 0.033./(kgT)/m for a sphere and
Uy = 0.04/(kgT)/m for a spheroid. The rotational diffu-
sion coefficients of a sphere and a spheroid around the mi-
nor axis are Dg = 1.2 x 107*//mkzTa*> and Dy = 6.8 x

1073 //mkpTa?, respectively. With the definition of the Péclet
number Pe = Uy/(0Dg), we obtain Pe &~ 38.5 for a sphere
(o0 = 2R) and Pe = 49 for a spheroid (¢ = 2b,). These val-
ues are in the range of synthetic [4] and biological [12]
microswimmers. The Reynolds number is Re = pUpR/n =
0.16 and 0.21 for a sphere and spheroid, respectively, when
we approximate the spheroid by a sphere with the same
volume.

The distance between the confining walls is H = 5¢. Par-
allel to the walls, we set L, = 5H and L, = H. Hence, the
ratio of persistence length in the bulk, I, = Uy/(2Dg), and the
wall separationis /,/H = Pe/10 > 1. The strength of the flow
field can be characterized by the Weissenberg number Wi =
y /(2Dg), where y = gpH/(2n) = 4u,,/H is the shear rate at
a wall, with mg the applied (gravitational) driving force and
U, the maximum flow velocity in the channel center. In terms
of the Péclet number and for the applied geometry, the Weis-
senberg number can be expressed as Wi = (u,,/Up)(2Pe/5).
We characterize the flow strength by the ratio u,,/U, in the
following.

Dilute systems of squirmers are considered with a packing
fraction of approximately 0.03. Flow simulations of pas-
sive spherical and spheroidal colloids at this density yield a
parabolic flow profile of the form U,/u,, = 4y(H — y)/H?,
with the maximum velocity u,, /u,’f, = 0.9, where uﬁ is the
theoretical maximum velocity of the MPC fluid. The value u,,
is somewhat smaller than the value of the MPC fluid, which
is attributed to an increased viscosity partly due to the finite
colloid density. In the following, velocities are normalized
with respect to the maximum flow velocity u,, of the passive
colloids in the flow. Explicitly, we consider the ratios u,, /Uy =
0.28, 0.57, 1.14, 2.25, 4.5, 6.75, and 11.3. This covers
the range 4 < Wi < 190 for spheres and 5 < Wi < 250 for
spheroids.

IV. RESULTS FOR SPHERICAL SQUIRMERS

The rheotactic properties of spherical squirmers adjacent
to walls and under flow have been studied theoretically and
numerically [7,35,50,66], typically without thermal fluctua-
tions. Here we demonstrate that such fluctuations substantially
affect their swimming behavior in Poiseuille flow.
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FIG. 3. Probability distribution function P(y, ¢) of the position y of a spherical squirmer within the channel normal to the confining walls
and their azimuthal angle ¢. The flow velocities are (a)—(c) u,,/Uy = 0.28, (d)—(f) 2.25, and (g)—(i) 6.75. The active stresses are (a), (d), (g)
B = —3 (pusher), (b), (e), (h) B = 0 (ciliate), and (c), (f), (i) B = 3 (puller). The white lines are “flow” lines, with arrows indicating the flow
direction. The distribution function is presented logarithmically. For an illustration of the squirmer dynamics, see movies M1-M12 [79].

A. Phase space: Joint probability distribution function

Figure 3 displays the joint probability distribution func-
tions P(y, ¢) of the squirmer position y normal to the walls
and the azimuthal angle ¢ [Eq. (9)] for various flow rates
and active stresses, corresponding to the phase-space plots of
Fig. 2. The flow lines indicate the (average) swimming be-
havior, which would be followed by a squirmer in absence of
thermal fluctuations and are reminiscent of the deterministic
flow lines in Fig. 2. Evidently, the distribution function P(y, ¢)
is rather inhomogeneous and no deterministic trajectories ex-
ist anymore as a consequence of thermal fluctuations. Instead,
distinct areas of high probability are present which depend on
the applied flow velocity.

At low flow rates, u,,/Uy < 0.3, P(y, ¢) exhibits strong
maxima adjacent to the walls with preferred angles. This
accumulation implies squirmer depletion from the channel
center, but the finite bulk density indicates a pronounced
cross-channel migration of squirmers. An example trajectory
is displayed in Fig. 4(a). For the low flow rate, the squirmer is
mainly aligned parallel to the flow direction. Starting on the

upper wall, the squirmer swims upstream toward the lower
wall with a propulsion orientation slightly larger than . At
the lower wall, the orientation changes to a value slightly
smaller than &, while the squirmer moves along the wall,
and it swims toward the upper wall again (cf. movie M4
[79]). This corresponds to the oscillatory motion as described
in Sec. II. However, fluctuations perturb the predicted de-
terministic motion and other features appear, such as local
reorientation near the walls, as reflected in Fig. 4(a), e.g., at
time ¢/h = 1.5 x 103 and yo ~ 1.6. This dynamics is typical
and independent of S.

The phase-space plots of Figs. 3(d)-3(f) for the larger flow
velocity u,,/Uy = 2.25 closely resemble the structure of the
SPP phase space of Fig. 2, since the probability for positions
off the walls increases. Moreover, the range of angles ¢ broad-
ens. As for the smaller flow rate, the squirmer oscillate (swing)
between the walls with high probability for angles in the
interval 7w /2 < ¢ < 37 /2. Athermal theoretical models, i.e.,
Pe = oo, taking only far-field hydrodynamics into account,
predict a fixed point at X = (¢, y/o) = (i, 2.5), where the
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FIG. 4. Trajectory of a spherical squirmer (pusher, § = —3) for
(@) u,/Up =0.28 and (b) u,/Uy = 6.75. The color code of the
trajectory represents time and the arrows indicate the propulsion
direction with the color code of the color wheel for the azimuthal
angle ¢. See also movies M4 and M10 for illustration.

fixed point is stable for pullers and unstable for pushers
[7,87]. For ciliates, X is marginally stable (center) [88]. This
is reflected in Figs. 3(d)-3(f). P(y, ¢) of the pusher is small
at X, but a “band” of high probability exists reminiscent of
the limit cycle of an athermal system [7]. In the case of
pullers, the trajectories inside of the (athermal) limit cycle
are attracted toward X [Fig. 3(f)]. Ciliates still exhibit a
pronounced “band” of high probability in the vicinity of the
limit cycle. Noteworthy, the probability at the walls is still
very prominent. In fact, there are (athermal) fixed points close
to a wall with preferred orientations [50]. In the presence
of noise, these points of highest probability correspond to
maxima in the density and the angular distribution function
(Fig. 5).

At even higher flow rates, u,,/Uy > 6.7, rotational trajec-
tories appear, with a high probability for trajectories covering
the whole range of angles 0 < ¢ < 2 [Figs. 3(g)-3(1)] .
As illustrated in Fig. 4(b), pushers swim downstream for
un/Up = 6.75, with a large variation of the propulsion an-
gle. Rotational parts appear typically close to walls and in
the center (cf. movie M10 [79]). Rotational trajectories are
frequently interrupted by oscillations, and vice versa, where

for oscillating parts squirmers are able to traverse the channel
persistently from one wall and back, and the azimuthal angle
varies between 0 < ¢ < 27 only.

Similar distribution functions are obtained for 8 = %1, as
shown in Fig. S1 [79]. There is a somewhat larger probability
P(y, ¢) in the channel center for low flow velocities u,, /Uy <
0.3 and a smaller one for higher flow rates compared to the
cases f = 3.

The differences in the trajectories—oscillating and rota-
tional motion—at the various flow rates are reflected in the
autocorrelation function (e(7) - e(0)) of the propulsion direc-
tion and its component along the flow direction (Fig. S2 [79]).
The oscillatory motion for flow velocities u,,/Uy < 5 implies
a power-law, or near power-law, decay of (e(t) - e(0)) as a
function of time, with an active-stress-dependent exponent.
Rotation (tumbling) is revealed by oscillations, where the
correlation (e, (t)e,(0)) is both positive and negative at short
times for u,, /Uy > 6. For the lower flow rates, the correlation
functions decay exponentially on average at longer times.

Evidently, hydrodynamic fluctuation perturbs the pure os-
cillatory or rotational scenario. The probability densities in
Fig. 3 indicate the most probable values for the squirmer
position and orientation. However, an individual squirmer can
assume any angle and position. Moreover, there are no more
strict stable or unstable fixed points or limit cycles. Yet, the
high probabilities adjacent to walls in Fig. 3, specifically for
u, /Uy = 0.28, are remnants of a stable fixed point at the wall
for nonfluctuating systems [18,50].

B. Density distribution

A generic effect of active particles is their accumu-
lation at walls, which leads to an increased wall den-
sity [5,8,19,22,50,64—67,74,75,89] and is also apparent in
Figs. 5(a)-5(c) for our systems (see also Figs. S3(a)-S3(c)
[79]). However, wall accumulation depends significantly on
the applied flow strength. For low active stresses and weak
flows, the wall density is rather similar for pushers, ciliates,
and pullers. The squirmers swim toward the wall, and only
after rotation by slow diffusional processes are they able
to leave again. Accumulation reduces with increasing flow,
which implies an increasing number of squirmers in the
channel center. A similar drop in wall density under flow has
been observed for a dumbbell-type microswimmer [70,90]
and slender-body active particles [69], and is attributed to a
preferred parallel alignment of the propulsion direction by
shear flow, which implies fewer wall impacts and a faster
detachment. The wall depletion is rather similar for ciliates
and pullers but is less pronounced for pushers. Pushers (8 <
0) prefer to stay at a wall, and significantly higher flow rates
are required to achieve a comparable depletion as for g > 0.
This can be explained by preferences in the distribution of
propulsion directions adjacent to a wall (cf. discussion in
Sec. IVCO).

For large flow velocities u,,/Uy 2 10, a maximum of the
squirmer density appears roughly in the middle between the
wall and the channel center. This is reminiscent of flow-
induced concentration dips in the channel center observed in
experiments [14] and simulations [19,70,90]. The maximum
is due to a shear-induced flow trapping of the squirmers,
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FIG. 5. (a)—(c) Density distribution normal to a wall for spherical squirmers and various flow velocities. The bulk density ppux is the
number density of squirmers in the channel. (d)—(f) Probability distribution function P,(¢) of the azimuthal angle ¢ [flow-gradient plane,
Eq. (9)] for squirmers in the layer 0 < y/o < 1. The line in (f) indicates the direction of increasing flow velocity. The flow velocities are
u,/Up = 0.28, 0.57, 1.14, 2.25, 4.5, 6.75, and 11.3 [bottom to top in (a) at y/o = 1.5], and the active stresses are (a), (d), (g) B = —3
(pusher), (b), (e), (h) g = 0 (ciliate), and (c), (f), (i) B = 3 (puller). The distribution function is normalized such that f P(¢)dep = 1, where
P(¢) is the distribution function for the whole channel. Results for 8 = +1 are presented in Fig. S3 [79].

which depends on the strength of the active stress and is most maximum at approximately ¢ = m, corresponding to parallel
pronounced for 8 > 0. Qualitatively, we explain the effect alignment with the flow.

by an increased residence time of the squirmer in the shear- The results in terms of squirmer alignment adjacent to
trapping region, where a density peak emerges and shifts a wall are qualitatively consistent with theoretical and sim-
toward the channel center with increasing flow strength (cf. ulation studies [50,67]. These studies predict stable fixed
Sec. VI for more details). points or oscillations next to walls with preferred angles,
where the orientation for pushers and pullers points away
and toward the wall, respectively. However, the theoretical
considerations predict downstream swimming for pushers and

C. Sphere azimuthal orientation (Flow-gradient plane) upstream swimming for pullers in the stationary state [50].

Microswimmers are known to exhibit a particular orien-  Thus noise changes the swimmer behavior qualitatively.
tation at a wall due to hydrodynamic interactions, which The alignment in the channel center 2 < y/o < 3 is rather
depends on their active stress: pushers preferentially align par-  different but is also influenced by confinement, since the

allel and pullers perpendicular to a wall [1,5,12,16,18,65,67].  scaled persistence length /,/H for the swimming motion is
This behavior is reflected in the probability distribution func- larger than unity, as is reflected by the probability distribution
tion P, (¢) of the azimuthal angle in the layer 0 <y/o <1  function P.(¢) in Figs. 6(a) and S6 (see also Fig. S3 for
next to the wall at y = 0 displayed in Figs. 5(d)-5(f) at weak 8 = #1 [79]). All squirmer types exhibit a preferred upstream
flows [see also Figs. S3(d)-S3(f)]. The distribution function orientation at low flow rates, u,,/Uy < 1, with a rather broad
P, (¢) exhibits pronounced maxima at ¢ =0 (27) and 7 and flat maximum. However, for u,,/Uy = 5, the distribution
for pushers, corresponding to down- and upstream orienta- function shows two maxima symmetric with respect to ¢ = 7
tion, respectively. For ciliates, an upstream maximum in the which are shifted to smaller and larger angles, respectively,
vicinity of ¢ 2 m is present [Fig. 5(e)], and the maximum with increasing flow rate. Naturally, the latter is related to
for pullers at ¢ < 37 /2 indicates alignment toward the wall ~ the symmetry of the setup but dynamically appears as a
[Fig. 5(f)]. With increasing flow velocity, the distribution P, consequence of the squirmers’ movement from the wall at
of pushers develops a maximum for angles 7/2 < ¢ < 7w, y =0 to that at y = H, with a preferred orientation of the
i.e., the preferred orientation is upstream and away from the squirmers, and vice versa. Figure 6(b) depicts the dependence
wall. The maximum of the distribution function for ciliates of the maximum ¢,, of P.(¢) for ¢ < m on the flow velocity
and pullers is in the range 7 < ¢ < 37 /2; hence they are  for various . The continuous broadening of the maxima at
preferentially aligned upstream and toward the wall. At high ¢ = 7 implies an abrupt emergence of peaks at ¢, < w for
flow rates, P, (¢) becomes broad and rather symmetric with a all active stresses, reminiscent to a pitchfork bifurcation. For
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FIG. 6. (a) Probability distribution function P.(¢) of the az-
imuthal angle ¢ [Eq. (9)] for spherical squirmers (ciliates, 8 = 0)
in the channel center 2 < y/o < 3. The color code is the same as in
Fig. 5. Results for § = 43 are presented in Fig. S6 and for g = £1
in Fig. S3. (b) Dependence of the maximum ¢,, (¢,, < w) of the
distribution function P(¢) in (a) on the flow strength u,, /U, for
the displayed active stresses. The vertical lines indicate the abrupt
transition in ¢,,.

larger flow velocities, ¢,, decreases nearly linearly. Interest-
ingly, the data for g = 0, =1 are rather similar, suggesting a
weak dependence on active stress only. The values for || = 3
deviate slightly, specifically, for 8 = 3 the transition appears
at large u,,/Uy only (Fig. S6(c) [79]). The “critical” flow
velocity for the transition depends on the magnitude and sign
of the active stress. For pullers, larger 8 values imply a shift of
the critical flow velocity to larger values, whereas for pushers
smaller B lead to a splitting at small flow strengths.

Squirmer depletion in the channel center appears for
U, /Uy > 5, where the values of the distribution function
P.(¢) for downstream orientations (0 < ¢ < 7w /2, 2w > ¢ >
3w /2) exceed those for upstream orientations (7/2 < ¢ <
31 /2).

D. Sphere polar orientation (Flow-vorticity plane)

The effect of flow on the squirmer orientation in the
vorticity direction is demonstrated in Figs. 7 and S7 (see also
Fig. S4 for 8 = %1 [79]). The distribution function P, (6) of

P,(0)x 107!

FIG. 7. Probability distribution function P, (6) of the polar angle
0 [flow-vorticity plane, Eq. (9)] of spherical squirmers in the layer
0 <y/o <1 for the flow strength u,/Uy = 1.14 and the active
stresses B = —3 (black), B = 0 (red), and 8 = 3 (cyan). The distri-
bution functions is normalized such that f P(0)sin0d6 = 1, where
P(#) is the distribution function for the whole channel. Figure S7
presents the distribution function for other flow strengths [79].

the polar angle 0 [Eq. (9)] in the accumulation layer (y/o < 1)
reveals a substantial migration in the vorticity direction and a
strong dependence on the active stress (Fig. S7). Specifically,
pushers exhibit strong migration nearly along the vortic-
ity direction (6 = 0, ), with a weak dependence on flow
strength only. Ciliates show (weak) vorticity migration for low
flow strengths, whereas a uniform distribution is obtained at
flow velocities u,,/Uy > 1.2. In qualitative difference, pullers
preferentially align along the flow direction (6 = 7 /2), with
a distribution function only weakly depending on flow veloci-
ties. For the smaller active stresses || = 1, a similar behavior
is obtained, however, with lower alignment probabilities and
a stronger preference for a uniform distribution, as shown in
Fig. S4.

In the channel center 2 < y/o < 3, the distribution of polar
angles is rather uniform for all active stresses and flow veloc-
ities. But for weak flows u,,/Uy < 1, the squirmers exhibit a
small preference for swimming in the vorticity direction (Figs.
S4 and S7).

Swimming in the vorticity direction of synthetic spherical
Janus particles has been observed experimentally [41], and the
preferred orientation is explained by a balance of contribu-
tions to the angular velocity of the particle from shear flow,
bottom heaviness, and swimming near a planar substrate. In
contrast, migration in the vorticity direction of our squirmer
pushers and ciliates is solely determined by hydrodynamics,
shear flow, and active stress.

E. Local squirmer velocity

Figure 8 illustrates the impact of flow on the local velocity
U, of squirmers along the flow direction. For all g and
u, /Uy < 5, the streaming velocities are smaller than those
of passive colloids. At high flow strengths, u,,/Uy > 6.75,
the velocity profile approaches that of passive colloids in the
channel center, the better the larger 8. However, in the vicinity
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FIG. 8. Velocity U, /u,, along the flow direction of spherical squirmers as a function of their position between the walls. The flow velocities
are u,, /Uy = 0.28, 0.57, 1.14, 2.25, 4.5, 6.75, and 11.3 (bottom to top), and the active stresses are (a) 8 = —3 (pusher), (b) B = 0 (ciliate),
and (c) B = 3 (puller). The upper yellow curve is the flow profile of the respective system of passive colloids. The gray area indicates upstream

velocities.

of the wall the squirmer velocity is always smaller than that of
the passive colloid. This difference in the active and passive
profiles indicates the presence of a large fraction of squirmers
swimming upstream, particularly at low flow strengths and
large B.

Steric and hydrodynamic wall interactions affect the
squirmer velocity, especially for low flow strengths. In the
accumulation layer adjacent to the wall, the squirmer velocity
is high as a consequence of the strong alignment of the propul-
sion direction [Figs. 5(d)-5(f)]. The strongly varying velocity
curves for the various active stresses reflect the significant
interference of the squirmer flow field with the no-slip wall.
In particular, negative velocities appear for 8 > 0 as long as
un /Uy < 0.6, which indicates upstream swimming (positive
rheotaxis). In contrast, the velocities U, for pushers with 8 =
—3 are always positive, with a weak u,,/U, dependence for
u, /Uy < 0.65. This is in qualitative agreement with previous
squirmer simulations [50].

The rheotactic behavior of pushers depends on the mag-
nitude of the active stress, and they exhibit (weak) positive
rheotaxis next to a wall for 8 = —1, whereas the velocity
profile of pullers is far less affected, as shown in Fig. S5.
The average squirmer velocity in the layer y/o < 1.5 next to
a wall is presented in Fig. 9, which emphasizes the significant
upstream velocity of ciliates and pullers for all 8. In compari-
son, the upstream velocity of pushers is rather weak, even for
B = —1. A weaker upstream velocity for pushers also has to
be found for phoretic rods [91].

Downstream swimming of pushers is in stark contrast to
the behavior of bacteria, such as E. coli, or sperm, which ex-
hibit positive rheotaxis while swimming at walls and channels
[6,13,16,33,92]. Evidently, the observed positive rheotaxis of
flagella-propelled bacteria cannot simply be explained by the
propulsion mechanism (pusher). The obtained features may be
related to the shape of the microswimmer, as bacteria are typ-
ically rather elongated than spherical; however, a spheroidal
pusher squirmer does not show positive rheotaxis either, as
discussed in Sec. VI.

V. RESULTS FOR SPHEROIDAL SQUIRMERS

The shape of microswimmers plays a major role while they
interact sterically or hydrodynamically with confining walls

[18,52,93]. To elucidate the influence of asphericity on the
rheotactic behavior, we consider spheroidal squirmers with
the aspect ratio b, /b, = 2.

A. Phase space: Joint probability distribution function

Figure 10 displays joint probability distribution functions
P(y, ¢) for spheroidal pushers with g = —1. The distribu-
tion functions qualitatively differ from those of spherical
squirmers, Fig. 3, in particular, the probability for squirmers
adjacent to walls and the preference for parallel alignment
with respect to the walls is higher. Moreover, the distribution
functions are rather similar for pushers, ciliates, and pullers, as
shown in Fig. S8; the active-stress differences are less evident
compared to those for spherical squirmers. Nevertheless, the
characteristics of the trajectories are similar. As indicated by
the flow lines and is illustrated in Fig. 11, the squirmers
steadily migrate from one wall to the other while changing
their orientation continuously.

At the low flow strength u,,/Uy = 0.28, both downstream
and upstream sequences appear, and the angle ¢ varies mainly
in narrow ranges in the vicinity of ¢ =0, 7, and 2m,
respectively. Hence, steric wall and shear alignment imply

B
s
p
B
B

u,/Up

FIG. 9. Average squirmer velocity in the layer 0 < y/o < 1.5
near a wall as a function of the flow velocity u,,/U, for the active
stresses B = 0, £1, and £3.
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FIG. 10. Probability distribution function P(y, ¢) of the position y of spheroidal pushers (8 = —1) within the channel normal to the walls
and the azimuthal angle ¢. The flow velocities are (a) u,,/Uy = 0.28, (b) 2.25, and (c) 6.75. The white lines are “flow” lines with arrows
indicating the flow direction. The distribution function is presented logarithmically. For an illustration of the squirmer dynamics, see movies

M13-M24 [79].

a pronounced orientational focus along the flow direction
(Fig. 10). The squirmer trajectories are reminiscent of the

ylo
S~ (\\‘\A;,
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FIG. 11. Trajectory of a spheroidal squirmer (pusher, = —1)
for (a) u, /Uy = 0.28 and (b) u,,/Uy = 6.75. The color code (see
Fig. 4) of the trajectory represents time, where the timescale is
(@0<t/h<15x 10% and (b) 0 < t/h < 10° (blue to green). The
arrows indicate the propulsion direction with the color code of the
color wheel for the azimuthal angle ¢. See also movies M16 and
M22 for illustration.

oscillation (swinging) motion of the athermal swimmer of
Sec. I1 [7], as depicted in Fig. 11. However, fluctuations imply
a transition between upstream and downstream swimming
sequences, and no stable oscillatory motion appears. At high
flow rates, u,,/Up = 6.75, the angle ¢ changes by 27 while
the squirmer traverses several times the space between the
walls. Here, oscillations are interrupted by rotational motions,
and vice versa, in a random sequence. As for spherical squirm-
ers, fluctuations destroy the dynamical patterns predicted by
far-field and athermal theories, and squirmers typically cover
the whole distance between the walls rather than being con-
fined in certain spatial areas. In any case, there is no stable
fixed point at X = [w, H/(20)], and limit cycles are unstable.
However, there are (athermal) fixed points adjacent to the
walls, corresponding to the maxima in the density, Fig. 12(a),
and angular distribution functions, Fig. 12(b) (see also Fig.
S10).

Active stress substantially affects P(y, ¢) for pushers, as
indicated in Fig. S12 for 8 = —3. Specifically, the probability
for wall accumulation and parallel orientation of the major
axis with the wall increases (Fig. S13). For 8 = 3, the squirm-
ers self-organize into flowerlike structures at a wall; hence we
refrain from a discussion of their flow behavior here.

As for spherical squirmers, the propulsion autocorrelation
function (e(t) - €(0)) of Fig. S9 decays exponentially or by
a power law for the respective flow rate. Again, oscillations
of the various curves indicate the tumbling motion of the
squirmers when u,, /Uy > 2.2.

B. Density distribution

The density distribution function, displayed in Figs. 12 and
S10, shows approximately equally large density maxima at
y/o ~ 0.37, the closest approach along the minor squirmer
axis, for pushers and ciliates, but somewhat higher values for
pullers at vanishing flow rates. The density decreases with
increasing flow strength and p increases in the channel center.
For flow velocities u,,/Uy 2 5, squirmers are depleted next
to a wall, similar to spheres; however, depletion of spheroids
is more pronounced, which is related to the rotation of the
extended spheroid next to a wall.
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FIG. 12. (a) Density distribution normal to a wall for spheroidal squirmers (ciliates, =0) and various flow velocities. The bulk density
Poulk 1S the number density of squirmers in the channel. (b) Probability distribution function P,(¢) of the azimuthal angle ¢ [Eq. (9)] in
the layer 0 < y/o < 1. (c) Probability distribution function P.(¢) in the channel center 2 < y/o < 3. The flow velocities are u,,/Uy =
0.28, 1.14, 2.25, 6.75, and 11.3 [bottom to top at y/o = 1.5 in (a)]. The distribution function is normalized such that the integral of P(¢) is

unity where P(¢) is the distribution function for the whole channel.

As for spherical squirmers, a peak in the density distri-
bution appears in the shear-trapping region at y/o ~ 1.3 for
large flow velocities u,,/Uy > 6. Note that the density in the
channel center is nearly equal to the bulk density. Again, we
explain the maximum by an enhanced residence time of the
microswimmer in the shear-trapping region (cf. discussion in
Sec. VI). The maximum moves toward the channel center with
increasing flow strength. The shape of the minimum in the
channel center is well fitted by a parabola with a curvature,
which increases with increasing flow velocity, consistent with
previous simulation and theoretical studies [90]. Remarkably,
the differences between pushers, ciliates, and pullers is less
pronounced compared to spherical squirmers.

C. Spheroid azimuthal orientation (Flow-gradient plane)

Figures 12(b) and 12(c) show the distribution function of
the azimuthal angle ¢ for ciliates in the vicinity of a wall,
P,, and in the channel center, P., for various flow rates.
We display results for ciliates only, because the behavior for
pushers and pullers is very similar, as shown in Fig. S10,
in contrast to the results of Fig. 5 for spheres, which show
qualitative differences for the various § values. Adjacent to a
wall [Fig. 12(b)], steric and hydrodynamic interactions lead to
a preferred parallel wall alignment, independent of the active
stress and the strength of the flow. However, pushers point
preferentially slightly away from the wall, with maxima of
the distribution function at ¢ = 0 and ¢ < m, while pullers
point toward the wall with maxima at ¢ < 27 and ¢ = 7 (Fig.
S10). With increasing flow strength, the maximum at ¢ =~ 0
gradually vanishes and only that at ¢ ~ 7 remains. Hence in
strong flows the spheroidal squirmers point upstream adjacent
to walls, but, on average, move with the flow downstream.
The situation is rather different in the channel center. For
flow strengths u,, /Uy < 1, upstream (¢ ~ ) and downstream
(¢ ~ 0) orientations occur with approximately equal proba-
bility. With increasing u,,/Uy 2, 5, downstream orientations
become dominant. The upstream-oriented squirmers are ro-
tated by the flow in the downstream direction when they leave
the accumulation layer. This is the rotational motion caused
by the flow (cf. movie M23 [79]).

Consistent with the distribution P(y, ¢) (Fig. S13), the
probability P, (¢) for downstream orientation of pushers with
B = —3 (Fig. S13) is significantly higher than that for g =
—1 for all considered flow rates (Fig. S10). This emphasizes
the relevance of active stress for microswimmer migration at
walls.

D. Spheroid polar orientation (Flow-vorticity plane)

Spheroidal squirmers exhibit substantial vorticity migra-
tion adjacent to a wall at smaller flow velocities, which is
qualitatively similar for all considered active stresses but is
most pronounced for pushers (Figs. 13, S11, S14). Evidently,
spheroidal pullers behave differently from spherical pullers,
which we attribute to specific squirmer-wall hydrodynamic
and steric interactions by the spheroidal shape. With increas-
ing u,, /Uy, the distribution functions for ciliates and pushers
flatten and develop a small maxima at 6 = /2, suggesting a
preferred alignment along the flow direction. Combined with
the high transport velocity, such squirmers quickly traverse
the channel from one wall to the other, hardly leaving time for
a cross-stream (vorticity) orientation next to walls. Pushers
preferentially swim in the flow-vorticity direction even at
strong flows, only for u,, /Uy = 11.3 and B = —1, nearly
equal probabilities for all angles are obtained. However, for
B = —3, swimming in the vorticity direction is even more pro-
nounced at high flow strengths (Fig. S14). Here the spheroidal
squirmers exhibit a rotation along the major axis, induced by
the local shear flow.

In the channel center, the distribution of polar angles de-
pends only weakly on the flow strength for all active stresses.
Yet for weak flows u,, /Uy < 2.3, the squirmers exhibit a small
preference for swimming in the vorticity direction which
changes to a preferred alignment along the flow direction for
larger flow velocities (Figs. 13, S11, and S14).

E. Velocity distribution

Simulations of passive spheroidal colloids yield the same
parabolic flow profile as for spheres, i.e., the profile is in-
dependent of colloid shape. Velocity profiles for spheroidal
squirmers are displayed in Fig. 14 for 8 = 0, +1. The impact
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FIG. 13. Probability distribution function P,(8) of the polar
angle 6 [Eq. (9)] for spheroidal squirmers (ciliate, 8 = 0) in the
layer 0 <y/o < 1. (b) Probability distribution function P.(9) in
the channel center 2 < y/o < 3. The flow velocities are u,,/Uy =
0.28, 1.14, 2.25, 6.75, and 11.3. The distribution function is nor-
malized such that f P(0)sinOd6 = 1, where P(0) is the distribution
function for the whole channel.

of flow is less pronounced compared to that of spherical
squirmers [Fig. 8(d)-8(f)]. In particular, there are essentially
only positive U, values, and the profiles U,(y) vary far less
with flow strength. This applies specifically to pushers for 8 =

—3 with their nearly flow-strength-independent profiles (Fig.
S15). Remarkably, there is essentially no positive rheotaxis
for spheroidal squirmers, in contrast to analytical calculations
in absence of fluctuations [94].

As for spheres, the velocities U, of squirmers are always
smaller than those of passive colloids for flow velocities below
a “critical” value, which depends on the active stress. For
example, U, /u,, < 0.9 foru,,/Uy < 2.4 and B = —1, whereas
U, /Uy < 6 and B = 1. Again, this reflects a large fraction of
upstream swimming squirmers. Interestingly, for large u,, /Uy,
in contrast to spherical squirmers, Uy /u,, can exceed the value
of passive colloids in the channel center due to a preferred
downstream orientation of the spheroids.

VI. DISCUSSION AND CONCLUSIONS

Flow, wall hydrodynamic interactions, active stress, ther-
mal fluctuations, and shape determine the transport of squirm-
ers in channels. Various aspects of these have been addressed
previously, but not all of them, and their interplay, have been
taken into account simultaneously before.

Our squirmer simulations exhibit various qualitative fea-
tures of microswimmers at walls and in microchannel flow
which are consistent with theoretical and experimental ob-
servations for Janus particles, bacteria, and spherical ABPs.
At weak flows, spherical as well as spheroidal squirmers
accumulate at walls, and specifically, spheres exhibit a pre-
ferred active-stress-dependent orientation—pushers parallel
and pullers perpendicular to walls. An increasing flow rate
leads to squirmer depletion at walls, and for high flow rates,
a density maximum appears in a shear-trapping region be-
tween the wall and channel center. This is reminiscent of a
density dip in the channel center found before in experiments
on bacteria [14] and simulations of active dumbbells and
rods [69,70,90]. Wall depletion is attributed to flow-induced
changes in the distribution of the azimuthal angle, from a
preference of the propulsion direction pointing toward a wall
to pointing away from it. In contrast to previous interpreta-
tions of the center density dip in terms of a fast crossing of
the channel center by the microswimmer [70], we explain the
increased squirmer density by an increased residence time in
the shear-trapping region, because there is no obvious reason
why squirmers well aligned with the flow direction should

T T T
1.0 (a)
0.8
\350.6*
=) UnlUp=0.28
0.4+ — ulUp=1.14
- — un/Up=2.25
02F unlUp=6.75 |
| — ulUp=113
ool vt P U B SI B S SI B A N E U EE U B
0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
ylo ylo ylo

FIG. 14. Velocity U,/u,, along the flow direction of spheroidal squirmers as a function of their position between the walls. The flow
velocities are u,, /Uy = 0.28, 1.14, 2.25, 6.75, and 11.3 [bottom to top at y/o = 0.5 in (c)] and the active stresses (a) 8 = —1 (pusher),
(b) B = 0 (ciliate), and (c) B = 1 (puller). The upper yellow curve is the flow profile of the respective system of passive spheroidal colloids.

The gray area indicates upstream velocities.

033275-12



RHEOTAXIS OF SPHEROIDAL SQUIRMERS IN ...

PHYSICAL REVIEW RESEARCH 2, 033275 (2020)

exhibit an increased transport velocity in the flow-gradient
direction. Shear flow leads to squirmer tumbling, which
appears above a critical shear rate in the trapping region in
the vicinity of a wall and moves with increasing flow velocity
closer to the channel center. Specifically, spheroidal squirmers
approaching a wall are preferentially oriented upstream by the
flow. While leaving the wall, rotation by shear flow leads to a
preferred downstream orientation in the channel center. This
tumbling motion extends the relative time spent by a squirmer
in the trapping region. In fact, several rotations are possible.
Hence, the dynamics corresponds to the rotational motion of
an athermal SPP of Sec. II at large flow rates.

Although the depletion effect and density modulation
can all be qualitatively explained by steric interactions and
flow only [69,70,90], hydrodynamic interactions, most promi-
nently the active stress, imply qualitative and quantitative
differences. These are reflected, e.g., in the phase-space plots
of Figs. 3 and 10 and the velocity profiles of Figs. 8 and
14. In particular, the effect of thermal fluctuations severely
affects the squirmer transport, specifically (i) fixed-point and
limiting cycles of athermal systems [7,35] are blurred, and
(ii) for any activity and active stress trajectories exhibit ran-
dom combinations of oscillatory and rotational parts. Both
aspects allow squirmers to explore the whole channel vol-
ume, although with flow-velocity and active-stress-dependent
probability. This is reflected in the phase-space distribution
function P(y, ¢), which shows areas of preferred positions
and azimuthal orientations of the propulsion direction. In
particular, extremal values of P(y, ¢) indicate surface ac-
cumulation, and an enhanced transport normal to the walls
appears with increasing flow rate. Fixed points and limit
cycles of athermal systems are replaced by extremal values
of P(y, ¢). The squirmer trajectories reflect the dynamical
behavior and exhibit oscillatory and rotational features with a
random switch between them, which is indicated by the flow
lines of Fig. 3 and 10.

Rheotaxis is determined by the preferred orientation of
the propulsion direction. Our simulations of spherical pushers
exhibit weak net upstream swimming only at weak active
stresses, f = —1, while downstream swimming occurs for
B = —3. However, ciliates and pullers exhibit strong positive
rheotaxis for 8 =1 and B =3 as long as u,, /Uy < 1. The
hydrodynamic wall interactions of ciliates and even more of
pullers imply an upstream orientation of the propulsion direc-
tion inclined toward a wall, which favors upstream swimming.
In contrast, pushers preferentially point away from a wall and
upstream swimming is absent.

Theoretical and simulation studies of athermal spherical
squirmers predict a stable fixed point next to a wall for pullers
(B > 0) and upstream swimming [35]. Positive rheotaxis is
predicted for the wall shear rate yR/Uy < 0.003 at 8 = 3,
corresponding to u,,/Uy < 0.0015H /o = 0.075 for our setup.
We find positive rheotaxis for a much wider range of flow
velocities at 8 =1 and 3, specifically at walls. Moreover,
theoretical calculations predict “locking” of the polar angle
0 in the shear-gradient plane. As shown in Fig. S7, pullers
exhibit a preference for such an alignment, but the distribution
of the angle 6 can be broad, in particular for small 8 (Fig.
S4). Thus, confinement of the propulsion direction in the

shear-gradient plane is not a prerequisite for upstream swim-
ming. Remarkably, pushers display a pronounced vorticity
migration. Whether this influences the stability of upstream
swimming needs to be studied in more detail.

For spheroidal squirmers, the most noticeable difference
to spherical squirmers is their distinct alignment at a wall,
with a maximum in the probability distribution function of
the azimuthal angle close to ¢ = 0, 27 and ¢ = . This is
due to steric wall interactions on the one hand and shear flow
on the other. Hence the orientation toward a wall is far less
pronounced compared to spheres due to the elongated shape.
As spheroids leave a wall, they are rotated by the shear flow in
the shear-trapping region and the propulsion direction points
preferentially downstream; as a consequence, downstream
swimming is favored, independent of the active stress. The
observed selection of preferred downstream orientation of
spheroids in the channel center seems to be a hallmark of elon-
gated microswimmers in the presence of thermal fluctuations.
Studies of dumbbell microswimmers suggest that the effect
is dominated by flow and is independent of hydrodynamic
interactions [70].

We observe a very strong vorticity migration at low flow
velocities for any active stress, which weakly depends on the
squirmer shape. Again, the effect on rheotaxis needs to be
analyzed analytically. Swimming in the vorticity direction of
catalytic spherical Janus particles has been observed experi-
mentally [41], and the preferred orientation is explained by a
balance of contributions to the angular velocity of the particle
from shear flow, bottom heaviness, and swimming near a pla-
nar substrate. In contrast, migration in the vorticity direction
of our squirmer pullers and ciliates is solely determined by
hydrodynamics, shear flow, and active stress.

Experiments and theoretical calculations of gold-platinum
phoretic rods find a pronounced upstream swimming for
ciliates and pullers [91], in contrast to our spheroidal squirmer
results. This discrepancy with the squirmer results could be
related to additional effects by the concentration profiles of
the reactant and products. The effect of the latter has been
shown to contribute to upstream alignment of spherical Janus
particles [35]. However, simulation studies of (A-B-A)-type
triblock rods with blocks of different slip velocities suggest
that particular features of the hydrodynamic flow field suffice
to create a preferred alignment of the propulsion direction
toward a wall and hence to achieve positive rheotaxis [91].

Our approach predicts downstream swimming of
spheroidal squirmers, independent of the active stress.
This is in contrast to experimental results on flagellated
bacteria, which swim upstream. Evidently, a pusher-type
active stress is insufficient to describe upstream swimming
of bacteria in channel flows. This is in line with extensive
experimental and simulation studies which suggest a strong
influence of the bacteria architecture and hydrodynamics on
their rheotactic behavior, specifically, the presence of a helical
flagellar bundle [6,13,16,33]. Bacteria swimming in circles at
walls are oriented toward the vorticity direction by shear flow
due to the chirality of their flagella bundle and thus exhibit
positive rheotaxis. For even larger flow rates, cells in the bulk
swim in the vorticity direction with an upstream preference.
Wobbling of the whole cell (Jeffrey orbits) enhances the
effect [16].
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Phenomenological nonhydrodynamic models neglecting,
e.g., active stresses and (partly) wall steric interactions
qualitatively describe some of the experimentally observed
behaviors, such as positive rheotaxis or formation of a density
dip in the channel center at sufficiently high flow strengths
[19,90]. Evidently, such models capture part of the phe-
nomenology but provide only limited insight into the detailed
underlying physical mechanisms. Nevertheless, such models
can be rather useful, since they are able to predict various
aspects of microswimmers in flow but may miss others com-
pletely.

We focused on a single Péclet number (Pe ~ 50) that is
representative for catalytic Janus particles [4] and tumbling
bacteria [12] and varied the flow rate. Further studies are
desirable to resolve the influence of the Péclet number on
the rheotactic behavior of squirmers. At higher densities, mi-
croswimmers exhibit an intriguing collective behavior at walls
and in thin films. Here, squirmer simulations can provide
valuable insight into collective effects and their influence on
rheotaxis, such as modifications of viscosity [95-97]. Our

simulations of spheroidal pushers with the active stress 8 = 3
show hydrodynamically organized flower-type structures at
walls. The puller flow field of the spheroids, inclined with
respect to the wall, leads to attraction and cluster formation
for B = 3 but not for B = 1. This once more emphasizes the
significance of active stress for the properties of microswim-
mers adjacent to walls.
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