001     878550
005     20240708133542.0
024 7 _ |a 10.1016/j.fusengdes.2020.111647
|2 doi
024 7 _ |a 0920-3796
|2 ISSN
024 7 _ |a 1873-7196
|2 ISSN
024 7 _ |a 2128/25578
|2 Handle
024 7 _ |a WOS:000569850500005
|2 WOS
037 _ _ |a FZJ-2020-02909
082 _ _ |a 530
100 1 _ |a Franke, Thomas
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The EU DEMO equatorial outboard limiter — Design and port integration concept
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599562873_31720
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The equatorial outboard limiters (also called outboard midplane limiters (OMLs)) are an essential part of the DEMO wall protection concept. Limiters are foreseen in different areas of the DEMO first wall, namely in the equatorial ports, on the high-field side, in vertical ports and additional protection limiters between equatorial and lower ports. The limiters shall prevent the plasma to touch the first wall of the breeding blankets during all plasma transients.The port integration concept of the OMLs, used for plasma ramp-up/-down, is explained including (i) thermal, structural and electromagnetic loads, (ii) neutronic requirements and related material properties, (iii) remote handling considerations, (iv) space and mass constraints and (v) the required alignment precision to allow equal distribution of the heat exposure amongst the individual of the plasma facing (PFC) limiter components.While the hot fusion plasma during ramp-up is impinging directly on the limiter, its PFC components temperature is rising and can be measured by means of either thermocouples or by infrared (IR) thermography an estimation of the heat flux on the contact point can be made. This is the basis for the proposed alignment strategy. Previous article in issue
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bachmann, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Biel, Wolfgang
|0 P:(DE-Juel1)129967
|b 2
700 1 _ |a Cismondi, Fabio
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Crofts, Oliver
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cufar, Aljaz
|0 0000-0002-3162-0611
|b 5
700 1 _ |a Federici, Gianfranco
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gonzalez, Winder
|0 P:(DE-Juel1)169616
|b 7
700 1 _ |a Gowland, Richard
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Keech, Gregory
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Mozzillo, Rocco
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Maviglia, Francesco
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Roccella, Massimo
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Tokar, Mikhael
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Vizvary, Zsolt
|0 0000-0002-8069-9215
|b 14
773 _ _ |a 10.1016/j.fusengdes.2020.111647
|g Vol. 158, p. 111647 -
|0 PERI:(DE-600)1492280-0
|p 111647 -
|t Fusion engineering and design
|v 158
|y 2020
|x 0920-3796
856 4 _ |y Published on 2020-05-25. Available in OpenAccess from 2022-05-25.
|u https://juser.fz-juelich.de/record/878550/files/Postprint%20Biel_The%20EU%20DEMO%20equatorial%20outboard.pdf
856 4 _ |y Published on 2020-05-25. Available in OpenAccess from 2022-05-25.
|x pdfa
|u https://juser.fz-juelich.de/record/878550/files/Postprint%20Biel_The%20EU%20DEMO%20equatorial%20outboard.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878550
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129967
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-09
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUSION ENG DES : 2018
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-09
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21