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Investigations of polymer systems that rely on the interpretation of dynamical scattering

results as e.g. the structure factor S(Q, t) of single chains or chain sections may need the

inclusion of effects as described within the framework of the random phase approximation

(RPA) for polymers. To do this in practice for the dynamic part of S(Q, t) beyond the initial

slope is a challenge. Here we present a method (and software) that allows a straightforward

assessment of dynamical RPA effects and inclusion of these in the process/procedures of

model fitting. Examples of applications to the interpretation of neutron spin-echo (NSE)

data multi component polymer melts are shown.

PACS numbers: 82.35.Lr, 29.30.Hs, 83.80.Sg, 81.16.Fg
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I. INTRODUCTION

Dynamics of polymer chains, parts of polymer chains or other objects like stars, dendrimers,

various block copolymers, embedded in different polymeric environments, is a vital information to

understand the physical behavior and material properties of those systems1. As for structural infor-

mation the acessibility of a detailed dynamics insight depends on the possibility to create contrast

between selected constituents of the system. For most polymers this can be done by selectively

deuterating some components in combination with thermal neutrons as scattering probe. The

thus generated coherent scattering intensity is usually observed in small angle neutron scattering

(SANS) experiments and conveys structural information on chain correlations and conformations.

Analysing this scattering intensity with the help of neutron spin-echo spectroscopy (NSE) yields

further information on the temporal development of the corresponding structural features. Thus

mobilities, lifetimes of certain structures or aggregates can be inferred and further analysis yield

information on interactions, forces, friction/dissipation and topological restrictions2. In the early

days the focus of such investigation lay on the single chain dynamics of homopolymers3,4. The

visibility generating contrast was between chemically identical (up to the H vs. D replacement)

chains, usually 10· · ·20% protonated chains in a "matrix" of deuterated chains. In these cases the

dynamical scattering functions are not altered by interference of chains, which can be described

by the random phase approximation (RPA)5–7. The sole RPA-type effect is the form of the con-

centration (volume fraction φ ) dependence of the common intensity factor φ(1−φ).

As soon as one moves a step towards more heterogeneous systems, genuine RPA type influ-

ences on the scattering functions beyond trivial factors can become important. Even a simple

binary mixture can be affected. This may immediately be realized by assuming a hypothetical

scenario, in which in the above mentioned h/d polymer mixture e.g. the d-polymer is of a different

kind and virtually immobile such that it forms a stiff network hosting the mobile h-chains. If in

the SANS regime all is described in terms of scattering densities the coherent scattering of such a

system stays completely elastic. Despite the fact that the h-chains may be quite mobile (or even

may constitute a kind of solvent ) no relaxation or decay of the wavevector Q and time t dependent

intermediate scattering function S(Q, t) will be observed. Of course the transition to the conven-

tional homogeneous system upon gradually turning on the mobility of the immobile part will lead

to a gradual approach of the constant S(Q, t) towards the conventional relaxing single chain struc-

ture factor. Intermediate situations will yield some intermediate relaxation behavior. The aim of
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the here presented formalism is to device a tool to get a quantitative access to this property. The

main effect as described by the RPA approach here is typically not the minor influence of more

or less small interaction parameters χ but the drastic exclusion interaction which is built in by the

volume conservation condition.

Before going into details it should also be emphasized that the following treatment basically

serves to take into account for these type of correlations that influence the visibility of dynami-

cal structure functions. It will not contribute anything to the changes and peculiarites of genuine

changes of the dynamics of the constituents of the system due to interactions with their surround-

ing. However, the singling out of the "decoration" effects of the chain arrangement of the dynamic

signal, enables an undistorted view on the proper chain dynamics.

II. RPA THEORY

As early as 1967 Jannink and de Gennes applied a dynamic RPA approach to semidilute poly-

mer solutions5, where the theoretical basis of the algorithms were outlined. The procedure elabo-

rated in this paper is based on the treatment described by Akcasu et al.6,7 Eq. (8-18b), where ex-

plicit expressions for the relation between the Laplace transforms of the undisturbed/free/genuine

scattering functions of the different constituents of the system and the scattering function of the

interacting and labeled sample are given. The practical difficulty in applying this scheme, which

was formulated already 25 year ago is not the arithmetic between the Laplace transforms but the

translation from the model functions into that space and the efficient and accurate backtransform

to the (Q, t) space of experimental data.

A. Non interacting multi-component RPA

Here we explicitly discuss and implement the RPA expressions for a system of n+ 1 (inter-

acting) components, a matrix (polymer) and n (different) polymers with different contrasts with

respect to the matrix/solvent. This leads to a n× n matrix problem. In the static formulation this

implies:

S(Q)−1 = S0(Q)−1 +v(Q) (1)

where S0(Q) is the matrix of undisturbed scattering functions and v(Q) describes the interaction

between the components. With that the scattering intensity I(Q) obtained for a specific contrast a
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is

I(Q) = aTS(Q)a (2)

To yield the Laplace transform of the dynamic scattering matrix S(Q,s) Akcasu and Tombakoglu7

define a frequency and Q-dependent diffusion coefficient by

S(Q,s) = [1s+Q2D(Q,s)]−1S(Q) (3)

i.e.

D0(Q,s) =
1

Q2

(

[S0(Q,s)S0(Q)−1]−1 −1
)

(4)

and derive the relation between the undisturbed/free diffusion coefficient D0(Q,s) and the RPA

influenced D(Q,s):

D(Q,s)≃[1+Q2D0(Q,s)S0(Q)v′(Q,s)]−1×

D0(Q,s)[1+S0(Q)v(Q)]
(5)

with

v′ = (β/s)[χ0
cc(Q,s)−1 −χ0

cc(Q,s = 0)−1]EET (6)

(β = 1/kBT will cancel out from the final expression), and EET is a matrix with all elements equal

to 1, the index cc relates to the "invisible" embedding, e.g. the deuterated matrix compound/solvent

in a polymer mixture. The dynamic susceptibility χ(Q,s) relates to the scattering functions via

χ(Q,s) =−βdS(Q, t)/dt = −β [sS(Q,s)− S(Q, t = 0+)]. With v(Q) = (β/χ0
cc)EET + ε these

equation suffice to compute the dynamic RPA result over the full time range from the undisturbed

dynamic structure functions S0
ii(Q, t) of the components and the matrix function S0

cc(Q, t). For the

inclusion of the important interference effects resulting from incompressibility the small interac-

tion parameters εi, j may be ignored, in particular this applies to virtually any system composed of

h- and d-labelled chains, possibly with different lengths, topology or partial labeling schemes of

the same polymer.

In this paper we treat the general structure of the resulting matrix elements for a 3 component

system (2 possibly labelled polymers + 1 matrix polymer):

With the short notation

Si = φi S0
ii(Q) (7)

and the Laplace transforms

S0
ii(Q,s) = S0

ii(Q)Fi(Q,s) (8)
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as expressed by the Q-dependent, normalized function fi = Fi(Q,s). For the here presented proce-

dure it is general to express f (s) in the form

f (s) =

(

N

∑
i=1

Ai

)−1
N

∑
i=1

Ai

ri + s
(9)

by which any relaxation (or even damped oscillation) type model function can be represented to

virtually any desired accuracy (see section III Eq. 15 ff.). Further we have for the volume fractions

φ1 +φ2 +φ3 = 1 (c=3).

With the expression for a common denominator N the matrix elements of the Laplace trans-

formed scattering matrix S is obtained. We have

N = (S1 +S2 +Sc) [S2 ( f2 s−1)+( f1 s−1)S1 +Sc ( fc s−1)] (10)

and with that the matrix elements

S11 =
S1

N
×
[

f1 ( f2 s−1)S 2
2 + f2 ( f1 s−1)S2 S1+ (11)

fc ( f1 s−1)Sc S1 + f1 ( f2 s+ fc s−2)Sc S2 +S
2

c ( fc s−1) f1

]

and

S22 =
S2

N
×
[

f2 ( f1 s−1)S 2
1 + f2 ( f1 s+ fc s−2)S1 Sc+ (12)

f1 ( f2 s−1)S1 S2 + fc ( f2 s−1)S2 Sc +S
2

c ( fc s−1) f2

]

and

S12 = S21 =
−S1 S2

N
× (13)

[

( f1 f2 s− f1 − f2 + fc)Sc + f2 S1 ( f1 s−1)+ f1 S2 ( f2 s−1)
]

.

III. NUMERICAL IMPLEMENTATION

The Laplace transform of the resulting structure factor matrix consists of algebraic expressions

that contain the Laplace transforms of the free scattering functions S 0
nm(Q,s) (Eqn. 10-13). These

algebraic expressions can easily be computed once the Laplace transforms of the undisturbed

function have been created. However, the difficulty consists in performing the inverse Laplace
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transform as final step to arrive at the resulting intermediate structure functions Snm(Q, t). The

present approach takes advantage from the fact that the time dependence of virtually all intermedi-

ate scattering functions that occur in the realm of soft matter and neutron spin-echo investigations

can accurately be described by a rather limited number N of simple exponentials. In practice

N = 4 · · ·6 usually is more than enough. This applies to both free model functions and data from

NSE experiments. Thus using

L {exp(−at)}=
∫ ∞

0
exp(−at)exp(−st)dt =

1
a+ s

(14)

The Laplace transform of the model functions can simply be written in the form of Eq. 9 as

S
0

nm(Q,s)≃ L

{

N

∑
i=1

Ai exp(−rit)

}

=
N

∑
i=1

Ai

ri + s
(15)

which even embraces the improbable cases with damped oscillation contributions by allowing

complex rate parameters ri (R(ri)> 0).

Having the algebraic expressions for S 0
nm(Q,s) it is straightforward to insert the free functions

from Eq. 15 which after some more or less tedious algebra evidently leads to resulting structure

factor matrix elements that all can be represented by quotients of two polynomials, i.e.

L(s) =
∑

N−1
i=0 zis

i

∑
N
i=0 cisi

=
Z(s)

N(s)
(16)

in that case the inverse Lapalace transform of F(s) is

L (t) =
N

∑
j=1

∑
N−1
i=0 ziα

i
j

∑
N
i=0 iciα

i−1
j

eα jt (17)

where α j is the j-th (complex) zero (with respect to s) of the denominator in Eq. 16. While the

above may appear as attractive analytic path to the inverse it turns out that if the degree of the

involved polynomials is larger than 3, the numerics (determining zeroes and evaluating values) is

problematic. In fact in for N ≤ 3(4) anlaytic expressions can be obtained, however, for generality

we use the following numerical approach.

Fortunately the form in which the Laplace transform is available, a stable and accurate inversion

by numerical integration is possible. The analytic form allows evaluation of the expression for

L(s) = S 0
nm(Q,s) for complex s opening the route to a general, fast and accurate inversion of the

Laplace transform by

Snm(Q, t) =
∫ η+i∞

η−i∞
exp(st)S 0

nm(Q,s)ds (18)
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with η a parameter that can be chosen to any value larger than the largest value of −R(ri). Since

the always decaying relaxation functions considered here have an upper bound of −R(ri)< 0,

any value η ≥ 0 may be chosen.

For the numeric inversion the routines computing L(s) from s must do this with full complex

arithmetic. The integration is performed on a path s = iω +η from ω =−∞ · · ·+∞. Of course

the limits have to be finite, however, sufficiently large. η can be set to virtually zero.

While integration with the general adaptive integration yields robust results it needs a huge

number of iterations and therefore is slow. Another approach to the integrations takes into account

the general relaxation type feature of the result functions and extending the ideas of Filon8. It

proceeds as follows:

• Setup a logarithmically spaced interval set {ωl = ω1, · · ·ωN}. The first interval starts at

ω1 =+ε (virtual_zero) to the first genuinely non-zero point ω2, the last interval ends at

ωN = 2ωN−1, i.e. 2 times its starting value. In the current implementation we use 900

intervals from ω = 10−7 · · ·106 (time unit = 1 ns) as default to cover all practical cases. The

shift property of the Laplace transform (F(s+a) = L exp(−as) f (t)) implies that keeping

a minimum rate ri > rmin for all components of the model function to avoid the singularity

at s = 0 just adds a negligible extra decay to the curves which is less than rminτmax in the

experimental range from 0 to τmax.

• Determine an interpolation of the form

Snm(Q,s = iω +η) = snm(ω)≃
2

∑
j=−3

cl
j ω j (19)

for ωl < ω < ωl+1

using jmax − jmin +1 equally spaced support points in the interval under consideration.

• The cosine integral is then obtained by the c j weighted sum of the analytically known

cosine-integrals B j(t) =
∫

f j(ω)cos(ωt)dω of the test functions f j(ω) = ω j.

• With the once created list of cl
j for all intervals the integral sum for any t is orders of mag-

nitude faster then the direct integration approach. Both methods yield consistent values.

Snm(Q, t)≃
N−1

∑
l=1

2

∑
j=−3

cl
j[B j(t,ωl+1)−B j(t,ωl)] (20)
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• Depending on the nature of the problem (i.e. in particular if very long relaxations play

a role) it is important to start the intervals at sufficiently small values, the default choice

should be adequate for most NSE-related cases.

Figures 1 and 2 show example for the outcome of the RPA-procedure for a mixture of short

diffusing Rouse chains in an entangled long chain matrix for different concentration of the short

chains. Figure 1 shows the situation where the short chains are labelled whereas figure 2 pertains

to 20 % labelled long chains. It is clearly visible that in particular the observable short chain

scattering is significantly influenced by slow long chain contributions even for concentrations of

φ = 0.1 and less. The influence in the case of labeled long chains is less pronounced but –if not

accounted for– would also lead to errors in the inferred "plateaus" in the relaxation function of the

long chain component. In a recent experiment the salient features of these RPA predictions could

be corroborated as is reported in the next section.
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FIG. 1. Example showing the RPA effect on the scattering signal of a small diffusing Rouse chain in a

matrix of long chains in the reptation regime. The red curve displays the undisturbed scattering function

of the small chains S10, the blue curve that of the long chains S20 = Scc0 and the black curves are the

observable signals from labelled small chains at various concentration φ in this system.
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FIG. 2. Example showing the RPA effect on the scattering signal of a long chain in a matrix of long chains

in the reptation regime diluted by short Rouse chains. The red curve displays the undisturbed scattering

function of the small chains S10, the blue curve that of the long chains S20 = Scc0 and the black curves are

the observable signal from 20% labelled long chains in this system with 10% and 20% (non-labeled) short

chains. In this case the influence of the RPA effect is also visible but comparatively small, the black curves

are only slightly below the pure long chain function. Note that the here shown results only account for the

effect of interference due to incompressibility, any influence of the small chain dilution on the genuine chain

dynamics must be contained in the S0 functions. Using the RPA scheme, however, allows for undistorted

viewing and fitting of these functions.

IV. EXPERIMENTAL VERIFICATION

To test the predictions of the RPA model treatment we conducted an experiment at the refur-

bished spin-echo spectrometer IN15 at the ILL, Grenoble, on short polyethylene (PE) chains in

a melt of long PE-chains at different concentrations9. The sample consisted of h-PE chains with

about 200 monomers (Mn = 2.9kg/mol) and a deuterated matrix polymer (d-PE) with about 2700

monomers per chain (Mn = 45kg/mol). The volume fractions φ of the short chains were 0.02,

0.06, 0.12 and 0.24. Data were collected for 3 scattering angle settings corresponding to momen-

tum transfers Q= 0.05, 0.08, 0.12Å
−1

and covering a time range between t = 0.05 · · ·477ns using
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neutron wavelengths of 10 and 13.5 Å. The temperature was T = 509K as in all previous NSE ex-

periments on PE.10–12 Background scattering as measured from a sample of pure long d-PE chains

has been subtracted.

The long chains are well entangled and their scattering function are well established11. An

interpolating representation of them is used as pure undisturbed matrix function entering the RPA

treatment (see section VI A). While the plain de Gennes expression used in11 can describe the

PE system reasonably well over the complete NSE time range it fails to do so for other polymers

(e.g. polyisoprene (PI) or polyethyleneoxide (PEO)). In all entangled linear polymer systems, for

which NSE experiments are available even at the shortest measured times (≃ 0.1ns) the scattering

function deviates from simple Rouse behavior. However, all experimental data can accurately be

described by an interpolation expression the general form of which is motivated by the de Gennes

treatment13. While a rigorous derivation of the expression and a straight physical interpretation of

the parameters is still missing, it is possible (for all our currently available data of entangled poly-

mers) to perfectly describe the experiments over the whole time range (≃ 0.1 to ≃ 200 · · ·600ns)

and the typical momentum transfer range Q = 0.05 · · ·0.15Å
−1

simultaneosuly with only 3 · · ·4
fit-parameters. Thus safe and accurate interpolations of S(Q, t) to any (Q, t) value within the cov-

ered range, and to a certain extend extrapolation beyond that, is enabled using this description.

For the present investigation we choose this description to represent the pure scattering function of

the long chains. The necessary parameters are extracted form previous NSE experiments on long

chain PE11,12.

The behavior of the short chains in the entangled long chain matrix is the original subject of the

investigation and thus a priori is unknown. Mainly a modified center-of-mass diffusion, hindered

by the matrix, is expected and at larger Q the internal dynamics of the short chains may contribute.

Naively we may assume that the internal dynamics of the short chains is not altered by the

embedding in the long chain matrix, the pure scattering function of the short chains could be

described by internal Rouse dynamics using explicit summation of finite chain modes14

f int
Rouse (Q, t)=∑

m,n
e−

1
6 |n−m|Q2l2

e
− 4R2

gQ2

π2 ∑p
1
p2 cos( pπn

N )cos( pπm
N )

(

1−e−p2 t/τR

)

(21)

. This yields an estimate of the amount of internal dynamics to be expected, at lower Q its influence

is small.

Thus we have S(Q, t) = e−
Q2
6 〈r2

com(t)〉 f int
Rouse (Q, t) with –as suggested by the shape of the exper-
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imental results– a modified center-of-mass diffusion with an initial sublinear regime (〈r2
com(t)〉 ∝

tβ , β < 1) with a transition to normal (Fickian) diffusion (〈r2
com(t)〉= 6D0t) around a mean squared

displacement (msd) of 〈r2
com(t0)〉= r2

0,

r2
com(t) =







e
− ln

(

r2
0

6D0

)

β
r2

0 tβ





a

+(6D0 t)a





1
a

(22)

where a determines the abruptness of the transition (here we use a = 8).

Up to a Q ≤ 0.08Å
−1

the estimated internal mode contributions stay below 25%. Therefore

we restrict the experimental assessment of the RPA effect influence to the Q = 0.05 and 0.08Å
−1

settings, where we have reliable descriptions for both the matrix and the short chain pure S(Q, t)

functions.

Since the center-of-mass diffusion of the short chains is hindered by the long chains and there-

fore deviates form the Rouse expectation. Also simulations and experiments on similar systems

yield a region of sublinear diffusion between the (here neglected) ballistic regime at very short

times and Fickian diffusion at long times15–19. Here we use the lowest concentration data to de-

termine the diffusion parameters: D0, β and r2
0. The thus observed short chain dynamics (pure) at

low Q is dominated by the sublinear/linear diffusion.

In figures 3 and 4 the comparison of model calculations based on the RPA-procedure for con-

centrations between φ = 0.02 and 0.24 are shown. The lowest concentration served to determine

the parameters of the sublinear diffusion. At higher concentrations (notably at 24 %) the pure func-

tion of the long chains must be modified and the diffusion of the short chains accelerates (from

about 1.6Å
2
/ns to 2.6Å

2
/ns). The modification of the long chain function pertains an increase of

the tube diameter and a modification of the local reptation regime20. However, the differences be-

tween the NSE spectra for φ = 0.02 · · ·0.12 are dominated by the RPA-related effects, admixtures

of the slow dynamics of the matrix chains become increasingly obvious with increasing concen-

tration. Even at φ = 0.02 there are small deviations from the pure undisturbed scattering function

as illustrated by the dashed limiting curves for φ → 0 in figure 4.

The short chain scattering function at larger Q (i.e. 0.12Å
−1

) deviates from the simple descrip-

tion in Eqn. 21, 22. Since the detailed investigation of the genuine polymer dynamics is beyond

the scope of this paper we restrict the discussion of the RPA effect on the observed NSE scattering

curves and their relation to the genuine polymer scattering functions to the data for Q = 0.05 and

0.08Å
−1

.
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be extracted without bias by using the procedure presented in this paper.

A. Implementation

The described numerical procedures have been implemented as Fortran code. This also contains

the routines to compute the here used models for the undistorted scattering functions Eqn. 21 and

22 (short chains) and 26 (long chains). Other models for undistored scattering function can easily

be added. An interface is supplied that allows to incorporate the method in python programs. The

code can be accessed at https://jugit.fz-juelich.de/neutron/RPA_for_polymers.

VI. APPENDIX

A. Parametrisation of scattering functions for entangled polymers

In13 de Gennes considers the density correlation along a 1-dimensional stretched "tube", which

corresponds to a diffusion equation along the tube. It results in the Green function of simple

diffusion, the fluctuation amplitude is ∝
√

B, the average density ∝
√

A.

Σ(s, t) = A +
B√
4πt

exp
(

−s2

4t

)

(23)

Equation 23 is written in terms of scaled time t and length s variables, in order to keep the expres-

sions simple. In the physical application the scale factors are input parameters.

The structure factor of a Gaussian coiled tube then is:

Slr =
1
L

∫ L

0

∫ L

0
Σ(s1 − s2, t)exp

[

−q2

6
|s1 − s2|

]

ds1ds2 (24)

Slr(q, t) =
1

L
√

πq4

(

72 A
√

π

{

exp
[

−Lq2

6

]

+

[

Lq2

6
−1
]}

+B

{

2
√

tq4
[

exp
(

−2Lq2 +3L2

12t

)

−1
]

+
√

π

(

q2t

3
+L

)

q4 exp
(

t
q4

36

)[

erfc
(

q2√t

6

)

− erfc
(

q2√t

6
+

L√
4t

)]})

(25)

Note that the q wave vector is with respect to the length scale a and L = Z the number of

entanglements, i.e. q → Qa and t → t/τ , where τ sets the time scale.
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The normalized scattering function Flr = Slr(q, t)/Slr(q,0) depends on the ratio B/A only (thus

setting A = 1 we are left with the parameter B → B/A). In de Gennes’ treatment B = 1/3, which

is also used in our parametrized description of the long chain scattering functions. The essence of

this parametrized description then is the diffusive density fluctuation Eq. 23 along the tube (local

reptation), however, with adapted length a and time τ scaling parameters.

The full scattering function then is constructed as product of the expression for a finite Rouse

chain (Mw ≃ Me) by direct summation with an effective rate Wxl4 as parameter and without c.o.m.

diffusion multiplied by Eq. 25 with the length and time scales a and τ as parameters:

S(Q, t)/S(Q) =

Slr(Qa, t/τ)/Slr(Qa, t = 0) ×S
N=Ne
Nrouse(Q, t)/S

N=Ne
Nrouse(Q, t = 0) (26)

Note: a4/τ has the same units as Wl4 and in the formulation for S(Q, t) used in11 it is implied

that the values of these two are equal. While this seems to work reasonably well to explain the full

shape of S(Q, t) for entangled polyethylene, it obviously does not so for other entangled polymers

as is illustrated below.

B. Parametrisation for pure long-PE and other entangled polymers

In order to be usable in practice the scattering functions of both the short (or any other type of

polymer architecture molecules) and the long polymer must be entered in terms of a suitable model

function into the RPA procedure. For that purpose it is only necessary that the model interpolates

the scattering function faithfully over an extended time range and the covered Q-range, preferen-

tially with a small number of adjustable parameters. A physical model is of course preferable but

often not available. In the first step of determining the pure scattering function the focus must

be set to an accurate interpolation. Ideally this is achieved by a physical model, the parameters

of it then can be determined directly. Otherwise the RPA procedure is used to extract a proper

interpolation representation of the pure scattering function (of the labelled compound) and that

can be considered as "evaluated" experimental result and as such be used to test it against model

predictions. As figures 3 and 4 illustrate a direct comparison of models of pure scattering functions

with the experimental data at finite concentration would lead to erroneous results. The necessary

input for the scattering function of the long chain "matrix" component for the interpretation of the

experimemntal results of this paper were inferred from the data and fits shown in figure 5. As
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convenience tool for investigation of mixtures containing entangled long chains of a number of

NSE investigated polymers we also show figures 6-8. The parameters shown in table I can imme-

diately be used to correspondingly modify the "matrix" functions in the examples contained in the

software repository.

TABLE I. Parameters for the interpolation model for a number of long entangled polymers. These may be

used to represent the S(Q, t) of the pure polymer systems in the RPA procedure at least in the time range

0.1 · · ·1000ns and 0.03 < Q < 0.15Å
−1

.

Polymer Mw /kg/mol T / K a/Å τ/ns a4/τ Å
4
/ns L Re/Å Wxl4 Å

4
/ns

PE 36 & 190 509 54.546 206.86 42793 90 34.9 36812

PI 80 413 159.0 535126 1194 10 46.8 4094

PEP 200 413 70.6 1321.5 18806 10 40.0 5157

PEO 200 413 53.1 988.1 8046 25 34.3 2338
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C. Mapping of model functions to the sum of n exponentials

The undisturbed (model) scattering functions S0
nm(Q, t) are needed in a form, where the time

dependence is described by a sum of exponentials

S0
nm(Q, t) = Snm(Q)×

[ N

∑
i=1

Ai(Q) exp(−ri(Q)t)
]

(27)

To include this approximation step into fitting loops it must be able to unsupervised, automatically

yield accurate representations of the pure scattering functions that emerge from specific physi-

cal models. This is performed by a non-linear fit (Levenberg-Marquard (LM) in MINPACK) of

the sum in Eq. 27 to a table with np logarithmically spaced times t j = exp[ j log(tmax/∆t)/np]∆t

with ∆t=initial step, maximum value: tnp
= tmax. tmax should be chosen 2 to 3 times the maxi-

mum time covered in the experiment or desired theory description. Finally the table contains val-

ues f j = S0
nm(Q, t j)/S0

nm(Q) for parameters {(A1,r1) · · ·(AN ,rN)}. The determination starts with

n > N tentative τ-values that are distributed with logarithmic spacing over the time range of the

table. Using the table, the best amplitudes for this selection of characteristic times (rates) then are

determined from the pseudoinverse from singular value decomposition. The resulting amplitudes

and rates are then used as start values for a full nonlinear LM fit. The fit result is checked for

"similar" rate values, in case of small (about 5 · · · 20 %) difference, adjacent values are combined

to one
√

1/(τi τi+1)→ 1/τ; (ai +ai+1)→ a and the effective number of exp-functions is reduced

by one. Further components with rates faster than a predefined limit r∞ (i.e. r∞ = 1/t1) are dis-

carded. The new set again enters the LM-fit procedure as new start values. This is iterated until

the number of remaining significant exp-function stays constant. This procedure can be inside an

(outer) fitting loop to determine model parameters of the "undisturbed" scattering functions. The

validity of the model mapping fit result Eq. 27 is checked after each step and excess deviations

are detected to create a warning. An example/check of the approach is illustrated in figure 9. Here

the model functions for the reptating chains (Eq. 26 and figure 5) are computed into tables with

100 log-spaced time values between 0.01 and 1000 ns (open circles) that served as input for the

procedure used to determine the approximation with simple exponentials Eq. 27. As result the

procedure yields 5 or 6 exponentials. The resulting representation for S(Q, t) is shown by the thick

red lines in figure 9. Over the full time range the deviations between the original model and the

n-exp model negligible.
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