000878553 001__ 878553
000878553 005__ 20240711085705.0
000878553 0247_ $$2doi$$a10.1149/1945-7111/ababd6
000878553 0247_ $$2ISSN$$a0013-4651
000878553 0247_ $$2ISSN$$a0096-4743
000878553 0247_ $$2ISSN$$a0096-4786
000878553 0247_ $$2ISSN$$a1945-6859
000878553 0247_ $$2ISSN$$a1945-7111
000878553 0247_ $$2ISSN$$a2002-2015
000878553 0247_ $$2ISSN$$a2156-7395
000878553 0247_ $$2Handle$$a2128/25576
000878553 0247_ $$2WOS$$aWOS:000563194900001
000878553 037__ $$aFZJ-2020-02912
000878553 082__ $$a660
000878553 1001_ $$00000-0002-1980-2009$$aHauser, Michael$$b0
000878553 245__ $$aOperation of SOFC Short-Stacks with Simulated Bio-Syngas: Influence of Model Tars Naphthalene and Phenol
000878553 260__ $$aBristol$$bIOP Publishing$$c2020
000878553 3367_ $$2DRIVER$$aarticle
000878553 3367_ $$2DataCite$$aOutput Types/Journal article
000878553 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599562579_680
000878553 3367_ $$2BibTeX$$aARTICLE
000878553 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878553 3367_ $$00$$2EndNote$$aJournal Article
000878553 520__ $$aOperation of solid oxide fuel cells (SOFCs) with bio-syngas from the gasification of biomass is a promising approach to highly efficient and sustainable power generation. At the same time, the coupling is challenging as several biogenic impurities in the bio-syngas have a negative effect on the SOFC. For this paper the impacts of the impurities naphthalene and phenol on SOFC short-stacks were investigated experimentally for the first time. The cell in the stacks were anode-supported SOFCs with Ni/YSZ anode. The experiments were performed at 700 °C under load with simulated bio-syngas consisting of hydrogen, carbon monoxide, carbon dioxide, methane and water vapor. 2 g Nm−3 of naphthalene (350 ppm) caused a pronounced voltage drop and an increase in cell temperature. By analysing the anode off-gas and recording of I–V-curves, it could be shown that naphthalene blocked the electrochemical hydrogen oxidation as well as the reforming of methane and the shift reaction of carbon monoxide. Up to 8 g Nm−3 of phenol (1900 ppm), on the other hand, led to carbon deposition and irreversibly damaged the structure of the anode substrate by metal dusting. This form of degradation was not visible in the electrochemical data during operation.
000878553 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000878553 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000878553 588__ $$aDataset connected to CrossRef
000878553 7001_ $$0P:(DE-HGF)0$$aHerrmann, Stephan$$b1
000878553 7001_ $$0P:(DE-HGF)0$$aHauck, Maximilian$$b2
000878553 7001_ $$00000-0002-9100-7456$$aFendt, Sebastian$$b3
000878553 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b4$$eCorresponding author
000878553 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b5
000878553 7001_ $$0P:(DE-HGF)0$$aSpliethoff, Hartmut$$b6
000878553 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/ababd6$$gVol. 167, no. 12, p. 124514 -$$n12$$p124514 -$$tJournal of the Electrochemical Society$$v167$$x1945-7111$$y2020
000878553 8564_ $$uhttps://juser.fz-juelich.de/record/878553/files/2020-04-23%20Operation%20of%20SOFC%20Short-Stacks%20with%20Simulated%20Bio-Syngas.pdf$$yOpenAccess
000878553 8564_ $$uhttps://juser.fz-juelich.de/record/878553/files/Hauser_2020_J._Electrochem._Soc._167_124514.pdf$$yOpenAccess
000878553 8564_ $$uhttps://juser.fz-juelich.de/record/878553/files/2020-04-23%20Operation%20of%20SOFC%20Short-Stacks%20with%20Simulated%20Bio-Syngas.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878553 8564_ $$uhttps://juser.fz-juelich.de/record/878553/files/Hauser_2020_J._Electrochem._Soc._167_124514.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878553 909CO $$ooai:juser.fz-juelich.de:878553$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b4$$kFZJ
000878553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b5$$kFZJ
000878553 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000878553 9141_ $$y2020
000878553 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000878553 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000878553 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-27
000878553 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878553 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2018$$d2020-02-27
000878553 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000878553 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000878553 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000878553 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000878553 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878553 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000878553 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000878553 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000878553 920__ $$lyes
000878553 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878553 9801_ $$aFullTexts
000878553 980__ $$ajournal
000878553 980__ $$aVDB
000878553 980__ $$aUNRESTRICTED
000878553 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878553 981__ $$aI:(DE-Juel1)IMD-2-20101013