001     878557
005     20240711101545.0
024 7 _ |a 10.1016/j.jclepro.2020.123277
|2 doi
024 7 _ |a 2128/25738
|2 Handle
024 7 _ |a altmetric:88781283
|2 altmetric
024 7 _ |a WOS:000592389400006
|2 WOS
037 _ _ |a FZJ-2020-02916
041 _ _ |a English
082 _ _ |a 330
100 1 _ |a Benitez, Alicia
|0 P:(DE-Juel1)174512
|b 0
|e Corresponding author
245 _ _ |a Ecological assessment of fuel cell electric vehicles with special focuson type IV carbon fiber hydrogen tank
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648131058_22581
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fuel cell electric vehicles promise to be a viable technical option for using surplus energy produced byrenewables, and in turn, help the transport sector to reduce environmental impacts. However, thetechnology is still under development and, for some components, the environmental performance isuncertain, e.g. the hydrogen storage tank. Manufacturers produce hydrogen tanks consisting of carboncomposite materials because of their mechanical properties. Yet, the production of carbon fibers involvescomplex and energy-intensive processes. Therefore, this study addresses a Life Cycle Assessment (LCA) ofa fuel cell electric vehicle (FCEV) and focuses on the manufacturing process of the hydrogen storage tankand carbon fibers needed for its production. This study suggests that the tank is important for climatechange, ionizing radiation and fossil depletion, but less relevant for toxic-related environmental indicators.The evaluation of the future scenario suggested an improvement in the environmental performanceof the tank, especially regarding climate change by 46%, namely 5.6 t CO2-Eq versus 3.0 t CO2-Eq, and human toxicity by 75%, namely 2.7 t 1, 4-DCB-Eq versus 0.7 t 1, 4-DCB-Eq per tank for current andfuture conditions, respectively. Finally, for a lifetime mileage of 150,000 km, the fuel cell electric vehicleis responsible for 15 kg CO2-Eq/100 km in the current scenario and 9 kg CO2-Eq/100 km in the futurescenario, respectively.
536 _ _ |a 111 - Energiesystemtransformation (POF4-111)
|0 G:(DE-HGF)POF4-111
|c POF4-111
|f POF IV
|x 0
536 _ _ |a 1111 - Effective System Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1111
|c POF4-111
|f POF IV
|x 1
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 2
700 1 _ |a Wulf, Christina
|0 P:(DE-Juel1)168163
|b 1
700 1 _ |a Grube, Thomas
|0 P:(DE-Juel1)129852
|b 2
700 1 _ |a Kuckshinrichs, Wilhelm
|0 P:(DE-Juel1)130467
|b 3
700 1 _ |a Palmenaer, Andreas de
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lengersdorf, Michael
|0 P:(DE-HGF)0
|b 5
700 1 _ |a R€oding, Tim
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 7
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 8
773 _ _ |a 10.1016/j.jclepro.2020.123277
|0 PERI:(DE-600)2029338-0
|p 123277
|t Journal of cleaner production
|v 278
|y 2021
|x 0959-6526
856 4 _ |u https://juser.fz-juelich.de/record/878557/files/1-s2.0-S0959652620333229-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/878557/files/Postprint.pdf
|y Published on 2020-08-04. Available in OpenAccess from 2022-08-04.
856 4 _ |u https://juser.fz-juelich.de/record/878557/files/Supplementary%20information.docx
|y Published on 2020-08-04. Available in OpenAccess from 2022-08-04.
856 4 _ |u https://juser.fz-juelich.de/record/878557/files/1-s2.0-S0959652620333229-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/878557/files/Postprint.pdf?subformat=pdfa
|x pdfa
|y Published on 2020-08-04. Available in OpenAccess from 2022-08-04.
909 C O |o oai:juser.fz-juelich.de:878557
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174512
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168163
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130467
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1111
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 2
913 0 _ |a DE-HGF
|b Energie
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-16
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CLEAN PROD : 2018
|d 2020-01-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CLEAN PROD : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21