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Abstract

To understand strongly correlated systems, we must confront the many-body problem.
This is practically impossible for the ab-initio Hamiltonian. To make such studies feasible
it is, thus, crucial to construct model Hamiltonians that are as simple as possible, so they
can be solved, while containing still enough details to be material-specific.

Our starting point is density functional theory for individual atoms and ions to obtain re-
alistic basis functions and the corresponding matrix elements. For the open-shell orbitals,
which show the strongest correlation effects due to the degeneracy of the multiplets, we
calculate the Slater-Condon and spin-orbit parameters from the resulting self-consistent
radial wave functions and potentials. We study the trends of the parameters systemati-
cally across the periodic table, develop an intuitive parametrization, and calculate atomic
open-shell spectra in LS-, intermediate-, and jj-coupling schemes.

The comparison of the interaction strengths of different coupling schemes gives rise to
the study of the moment formulas, which reduce the calculation from the “impossible”
many-electron Hilbert space to a one- or two-electron space. We derive the analytic
moment formulas for the general one- and two-body Hamiltonians. The moment formulas
provide us a new approach to handle the many-electron Hamiltonians without the need
of working with a many-electron basis, but only with matrix representations under the
one- or two-electron basis.

To model the Hamiltonians for realistic materials, orthonormal basis orbitals are preferred.
However, while the atomic orbitals are mutually orthonormal within a single atom, they
are, in general, non-orthogonal for atoms on different lattice sites. We study and develop
efficient multi-center integral techniques for evaluating orbital overlaps, which are essen-
tial for performing the orbital orthogonalization. To orthogonalize the basis orbitals, we
apply the Löwdin symmetric orthogonalization scheme, which minimizes the orbital mod-
ification. To generalize the multi-center integrals, we introduce the re-centering method,
which is a spherical harmonic expansion that requires the Gaunt coefficients with large
angular quantum numbers. To compute the Gaunt coefficients, the previously known nu-
merical methods are, however, inaccurate for the coefficients that involve large quantum
numbers. Therefore, we provide a numerically stable algorithm for computing the Gaunt
coefficients efficiently and accurately. The re-centering method enables us to compute
general multi-center integrals including the hopping matrix elements and the long-range
Coulomb matrix elements. After performing the basis orthonormalization, we study the
deformation of the resulting orbitals and investigate the modification of the corresponding
multi-center matrix elements under changes of the bond lengths or lattice constants.
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Zusammenfassung

Wollen wir stark korrelierte Materialien verstehen, sehen wir uns mit dem Vielteilchen-
Problem konfrontiert. Für parameterfreie ab-initio Beschreibungen ist dieses Problem in
der Praxis unlösbar. Um dennoch stark korrelierte Materialien simulieren zu können ist
es daher essentiell Modelle zu entwickeln, die einfach genug sind, um mit vertretbarem
Aufwand lösbar zu sein, die aber immer noch komplex genug sind, um materialspezifisch
zu sein.

Wir beginnen die Konstruktion realistischer Modelle mit Dichtefunktional-Rechnungen
für einzelne Atome, mittels derer wir realistische Basisfunktionen sowie die zugehörigen
Matrix-Elemente bestimmen. Für offenschalige Systeme, die aufgrund ihrer hohen Ent-
artung die stärksten Korrelations-Effekte zeigen, berechnen wir die Slater-Condon und
Spin-Orbit Parameter aus den selbstkonsistenten Wellenfunktionen und Potenzialen. Wir
untersuchen die Trends dieser Parameter über das gesamte Periodensystem, entwickeln
eine intuitive Parametrisierung und bestimmen die atomaren Spektren in LS-, gemischter
und in jj-Kopplung.

Um die Stärke der Wechselwirkungen sinnvoll vergleichen zu können, untersuchen wir die
spektrale Aufspaltung mittels ihrer Varianz. Dazu entwickeln wir allgemeine analytische
Ausdrücke für die Momente des Hamilton-Operators: Formeln für beliebige Momente
des Einteilchen- sowie für Momente beliebiger Zweiteilchen-Operatoren bis zur Ordnung
zwei. Diese bemerkenswerten Formeln erlauben es uns die Breite der Vielteilchen-Spektren
extrem effizient und völlig ohne Betrachtung des Vielteilchen-Hilbertraums zu bestimmen.
Dabei arbeiten wir mit Matrizen, deren Dimension lediglich mit dem Quadrat der Anzahl
der Basisfunktionen wächst.

Die Modell-Beschreibung realistischer Materialien wird intuitiv und vermeidet große Über-
lapp-Matrizen wenn die Basisfunktionen orthonormal sind. Atomare Funktionen sind
zwar orthogonal auf ihrem jeweiligen Platz, haben aber einen nicht-verschwindenden
Überlapp zwischen verschiedenen Gitterplätzen. Wir entwickeln effiziente Multizentren-
Techniken zur Berechnung dieser Überlapp-Integrale, die die Voraussetzung für die Ortho-
gonalisierung bilden. Wir nutzen das Löwdinsche Orthogonalisierungs-Verfahren, das eine
minimale Modifikation der Orbitale garantiert. Wir verallgemeinern die Multizentren-
Integrale durch Einführung der Rezentrierungs-Methode bei der die Orbitale um einen
anderen Gitterplatz in Kugelflächenfunktionen entwickelt werden. Für verlässliche Rech-
nungen benötigen wir dazu Gaunt Koeffizienten für sehr hohe Drehimpuls-Quantenzahlen.
Da die bekannten Methoden dazu nicht genau genug sind, entwickeln wir einen numerisch
stabilen Algorithmus, der genauer und gleichzeitig effizienter als andere Methoden ist. Die
Rezentrierungs-Methode erlaubt es uns schließlich, die allgemeinen Multizentren-Integrale
für die Hüpf-Integrale und die langreichweitigen Coulomb-Integrale zu bestimmen. Als
Beispiel für den Effekt der Basis-Orthogonalisierung untersuchen wir die Deformation
der atomaren Orbitale und die daraus resultierende Änderung der Modell-Parameter bei
Änderung der Bindungslängen bzw. Gitterkonstanten.

v





Overview of the thesis

Chapter 1: What is a many-electron problem? In this chapter, we introduce the one-
electron orbital basis, on which the second quantization formalism is built. We discuss the
construction of a many-electron basis and the set up of the matrix representations of the
Hamiltonians. The keywords are: second quantization, bit representation, many-electron
basis, matrix representations.

Chapter 2: How to use a one-electron orbital basis to describe solids? In this chapter,
we discuss the tight-binding method and the general idea of using the method to describe
realistic materials. The keywords are: tight-binding, Bloch waves, energy bands.

Chapter 3: How to obtain realistic atomic orbitals and potentials? In this chapter,
we solve many-electron atomic systems in the framework of density functional theory
(DFT). The keywords are: atomic orbitals, Kohn-Sham equation, self-consistent fields,
local density approximation.

Chapter 4: How to use the LS- and jj-coupling schemes to solve many-electron prob-
lems? In this chapter, we solve atomic open-shell many-electron problems analytically,
using different coupling schemes. The keywords are: open-shell, atomic multiplets, LS-
coupling, jj-coupling, Coulomb Hamiltonian, spin-orbit Hamiltonian.

Chapter 5: Is there a pattern among the matrix elements? In this chapter, we study
systematically the trends of the Coulomb and spin-orbit interactions and the correspond-
ing matrix elements in the atomic open-shell systems over the entire periodic table. The
keywords are: trends, Slater-Condon parameters, spin-orbit parameters, spectral variance.

Chapter 6: Is it possible to extract physical information from a many-electron Hamilto-
nian without working with a many-electron basis? In this chapter, we present an analytic
approach to compute the moments (e.g. mean and variance) of a general many-electron
Hamiltonian. The keywords are: moments, one- and two-body Hamiltonians.

Chapter 7: How to compute the Gaunt coefficients? When calculating Coulomb matrix
elements or multi-center integrals we must evaluate Gaunt coefficients. In this chapter, we
develop a systematic approach based on finite-precision arithmetic to compute the Gaunt
coefficients efficiently and accurately, even for large angular momenta. The keywords are:
algorithm for Gaunt coefficients, spherical harmonics.

Chapter 8: What if the basis orbitals are not orthogonal? In this chapter, we discuss
a systematic way to compute orbital overlaps. From the overlap matrix, we can produce
a new set of basis orbitals which are mutually orthonormal, yet preserving their atomic
features as much as possible. The keywords are: orbital overlap, Fourier transformation,
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Löwdin symmetric orthogonalization.

Chapter 9: How to compute matrix elements that involve multiple centers? In this
chapter, we discuss the evaluation of multi-center integrals including hopping matrix ele-
ments and long-range Coulomb matrix elements. We study the effects of orbital orthog-
onalization on the resulting matrix elements. The keywords are: multi-center integrals,
re-centering method, hopping matrix elements, long-range Coulomb matrix elements.

Python codes:

In the thesis, I put effort on explaining how things are implemented in practice. For
important methods and algorithms, I present my solutions in Python (version 3),
which is chosen for its code readability. Sometimes I receive comments like, “Qian,
no one will read your code!” I agree on that I am not presenting the “best solutions”.
However, I believe there is always a group of audiences who want to see how things
are actually implemented. The process of translating a physical problem into precise
machine instructions is in some sense breaking down a complicated problem into
simple tasks, which often helps us better understand a problem, realize where the
crucial points or the difficulties are, and potentially helps us gain new insights to the
problems.
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1. Many-electron states

1.1. Introducing a basis

Consider a potential created by six nuclei, forming a benzene-like ring (Fig. 1.1).

Figure 1.1.: A ring-shaped potential created by six nuclei.

By saying “given a potential created by nuclei”, we already implied the Born-Oppenheimer
approximation, that the motion of electrons and nuclei can be separated. In the focus of
describing electrons, the positions of the atomic nuclei are considered to be fixed.

Suppose the system contains a single electron. The one-electron Hamiltonian in atomic
units [1] reads,

H = −1

2
∇2 −

6∑
α=1

Zα
|r−Rα|

(1.1)

Encapsulating the electron-nuclei attraction as an external potential Vext(r), we can write
down the one-electron Schrödinger equation:[

−1

2
∇2 + Vext(r)

]
ϕ(r) = Eϕ(r) (1.2)

This is a textbook-like quantum mechanics problem. The external potential has a rel-
atively complicated form, in the sense that Eqn. (1.2) cannot be solved analytically.
However, by numerical methods, the one-electron problem is exactly solvable.

1



1. Many-electron states

Now, consider the system with many electrons. The many-electron Hamiltonian becomes,

H =
Ne∑
i=1

[
−1

2
∇2
i −

6∑
α=1

Zα
|ri −Rα|

]
+
∑
i<j

1

|ri − rj|
(1.3)

In addition to the one-body terms, the Hamiltonian has now
(
Ne
2

)
pairs of two-body terms,

namely, the electron-electron interaction. Denoting the nuclear potential as Vext(ri), we
write down the many-electron Schrödinger equation:{

Ne∑
i=1

[
−1

2
∇2
i + Vext(ri)

]
+
∑
i<j

1

|ri − rj|

}
Ψ(r1 · · · rNe) = EΨ(r1 · · · rNe) (1.4)

Comparing with (1.2), the difficulty of solving (1.4) blows up to a completely different
level. The complication due to the external potential is in comparison almost negligible.
The real challenge enters from two aspects:

1. To solve the problem numerically, one must represent the many-body wave function
Ψ(r1, r2, · · · , rNe) on a numerical grid. However, an Ne-electron wave function is
3Ne-dimensional. The number of grid points is “the number of grid points per
dimension to the power of 3Ne”.

2. The two-body term
∑

1
|ri−rj | couples all the coordinates. If there were no such a

term, the many-electron Schrödinger equation would be factorized completely to
one-electron Schrödinger equations. The two-body term

∑
1

|ri−rj | gives rise to the

“many-body” problem.

The theory of (almost) everything:

In the most general problem setting, both electrons and the nuclei are described by the
many-body wave function. The many-body Hamiltonian, without relativistic effects,
is given by,

H = −
∑
i

1

2
∇2
i −
∑
α

1

2Mα

∇2
α−

∑
i,α

Zα
|ri −Rα|

+
∑
i<j

1

|ri − rj|
+
∑
α<β

ZαZβ
|Rα −Rβ|

(1.5)

Quoting Wigner and Seitz [2]:

If one had a great calculating machine, one might apply it to the problem
of solving the Schrödinger equation for each metal and obtain thereby the
interesting physical quantities, such as the cohesive energy, the lattice con-
stant, and similar parameters. It is not clear, however, that a great deal
would be gained by this. Presumably the results would agree with the exper-
imentally determined quantities and nothing vastly new would be learned
from the calculation. It would be preferable instead to have a vivid picture
of the behavior of the wave functions, a simple description of the essence of

2



1.1. Introducing a basis

the factors which determine cohesion and an understanding of the origins
of variation in properties [. . . ].

The many-body Schrödinger equation is practically unsolvable. On the other hand, is it
really necessary to have the exact solution of a many-body problem [3, 4]? It is often
misleading to think that our job is to find approximations to the exact solution of the
Schrödinger equation. Rather, the proper approach is to develop practical approximation
schemes for explaining the main features of complicated systems. In most of the electronic
structure calculations, we are interested in finding the ground state of the system. In the
spirit of the variational principle, the one-electron basis orbitals are introduced.

Returning back to the one-electron problem. In our example, a “natural” choice of the
basis orbitals are the six 1s-orbitals at each nucleus site. Denoting each 1s-orbital with
its site number, we construct the approximated ground state:

|gs〉 ≈ a1 |1s1〉+ a2 |1s2〉+ a3 |1s3〉+ a4 |1s4〉+ a5 |1s5〉+ a6 |1s6〉 (1.6)

If the nuclei are well separated (significantly greater than a Bohr radius), (1.6) would be
a sufficiently good approximation. Eventually, in the limit of infinite separation, (1.6)
becomes exact. However, when the nuclei are close, it is often overlooked, that while
atomic orbitals are mutually orthogonal within a single atom, they are, in general, non-
orthogonal for atoms on different lattice sites. When choosing a basis, orthonormal bases
are primarily preferred. Because choosing a non-orthogonal basis will introduce a “gen-
eralized eigen-value problem” which involves additionally solving an overlap matrix and
makes the problem unnecessarily complicated. In Chapter 8, we will discuss the orbital
overlap problems and orbital orthogonalization in detail.

At this stage, we assume that the basis orbitals are orthogonal. The problem reduces from
solving the differential equation to finding the six coefficients. For quantum chemists, this
is the well known “LCAO” (linear combination of atomic orbitals) technique. In solid
state physics, we call it the “tight-binding” method. The name is found in contrast to
the “nearly-free electron model”, that instead of considering electrons in solids as plane
waves, we consider electrons that are tightly bound to the atom to which they belong
and they have limited interaction with states and potentials on surrounding atoms of the
solid. The tight-binding method will be discussed in the next chapter.

In the case of many-electron systems, we need to work with many-electron states and
consider the additional electron-electron interaction. There are two approaches to study
the interaction:

1. A mean-field approach. We choose basis orbitals that are self-consistently con-
structed by mapping the electron-electron interaction to a mean-field potential.
Effectively, we solve a one-electron problem. The self-consistent field (SCF) calcu-
lation for atomic orbitals will be discussed in Chapter 3.

2. A many-body approach. We construct many-body basis states and include explic-
itly the electron-electron interaction among individual electrons. In principle, this
approach leads to exact solutions if the number of basis orbitals is infinite. However,

3



1. Many-electron states

we cannot afford to use a large number of basis orbitals, as the dimension of the
many-body basis grows exponentially with the number of one-electron basis orbitals.
The representation of the many-body basis will be discussed in the next section.

The second quantization [5] is formulated in the one-electron orbital basis, which provides
a convenient way for handling many-body states. Given an (orthonormal) one-electron
orbital basis, the exact Hamiltonian of an interacting system can be written in the form:

H =
∑
αβ

hαβ c
†
αcβ

︸ ︷︷ ︸
one-body

+
∑
α<β
γ<δ

v̈αβγδ c
†
αc
†
βcγcδ

︸ ︷︷ ︸
two-body

(1.7)

In the following sections in this chapter, we are going to explain the construction of
the many-electron basis and the many-electron Hamiltonians in the language of second
quantization.

Spins:

We were ignoring spins to simplify our discussions. However, to completely describe
electrons, it is necessary to specify their spins. For two reasons: 1. There can be
spin-dependent operators (e.g. the spin-orbit Hamiltonian); 2. Even in the absence of
spin-dependent operators, spins are still necessary, as the many-electron wave function
must be antisymmetric with respect to both spatial and spin coordinates.

In real-space, an electron is described by both the spatial coordinates r and the spin
coordinate σ. Collectively, they are denoted by x [5, 6]:

x = {r, σ} (1.8)

The proper notation for an Ne-electron wave function is therefore,

Ψ(x1,x2, · · · ,xNe) (1.9)

However, those troubles with coordinates vanish by working with basis orbitals. Be-
cause, given a basis, we only describe electrons by specifying which orbitals they
occupy.

1.2. Representation of a many-electron basis

Given a basis, a one-electron state is a linear combination of one-electron basis states.
Likewise, a many-electron state is a linear combination of many-electron basis states. How
are the many-electron basis states constructed?

Consider a set of 6 one-electron basis orbitals (mutually orthonormal). The orbitals that
we are discussing are general : they can be 6 orbitals at different sites (e.g. on a lattice),
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1.2. Representation of a many-electron basis

or at one site (e.g. in an atom). The orbitals carry the spin quantum numbers, so one
orbital can be occupied by at most one electron, not two. Each orbital has its own unique
“ID”. For instance, each ID addresses the lattice site and the orbital quantum numbers
(including spin). We label the 6 orbitals sequentially as “0, 1, 2, 3, 4, 5”. Pictorially, we
can visualize them as 6 “boxes”:1

5 4 3 2 1 0

Now, how many electrons do we have in the system? If the number of electrons is fixed,
then we are working in the Hilbert space. If the number of electrons varies, ranging
from 0 to 6 electrons, then we are working in the Fock space. Here, we discuss systems
that have a fixed number of electrons, and provide a routine for setting up a many-electron
basis in the Hilbert space (one can easily generalize the discussion to the Fock space).

Consider a system with 6 orbitals and 2 electrons. Putting 2 electrons into 6 orbitals is
a combinatorics problem (electrons are identical, orbitals are distinguishable). There are
“6-choose-2” (

6

2

)
=

6× 5

2!
= 15

possible ways. Explicitly, they are enumerated in Fig. 1.2. The 15 configurations represent
the 15 many-electron basis states, which form the complete many-electron basis for the
system with 6 orbitals and 2 electrons.

• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •

Figure 1.2.: The 15 configurations of a system with 6 orbitals and 2 electrons.

Electrons are fundamentally indistinguishable. Thus, a many-electron basis state does not
contain the information of “which electron is in which orbital”. Rather, the only relevant
information is “how many electrons are there in each orbital”. Therefore, a many-electron
basis state can be precisely represented by a set of “occupation numbers”. Here we choose
to represent a many-electron basis state in the order:

|n5 n4 n3 n2 n1 n0〉

For instance, ∣∣∣∣ 5 4 3 2 1 0
• •

〉
7→ |100010〉 (1.10)

1The order (from right to left) is chosen to be consistent with the convention of representing a “ket”

state in the 2nd quantization: c†5c
†
4c
†
3c
†
2c
†
1c
†
0 |0〉. It is also the natural order for the “bit representation”

that the right-most digit is the “first” digit.
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1. Many-electron states

Corresponding to Fig. 1.2, the occupation number representations read,

|000011〉 |000101〉 |000110〉 |001001〉 |001010〉
|001100〉 |010001〉 |010010〉 |010100〉 |011000〉
|100001〉 |100010〉 |100100〉 |101000〉 |110000〉

One must have realized that they are simple binary numbers! Since electrons are fermions,
the occupation numbers are either 0 or 1, thus the “occupation number representation”
reduces to the “bit representation” of the many-electron states, which is extremely com-
puter friendly. Now, generating this basis set is nothing but generating integer numbers.
In this example, the corresponding integers in decimal format are

3 5 6 9 10
12 17 18 20 24
33 34 36 40 48

How do we generate this set of integers? Here is a simple algorithm: Generate integers
from 0 to 63 (in binary, that is from 000000 to 111111); for each integer, check if this
integer in its binary format contains exactly two 1-bits; if yes, store this number. A simple
Python (version 3) code for setting up a many-electron basis is given in Algorithm 1.1.
This Basis class sets up the bit representation of the many-electron basis for a given
number of orbitals Norb and a given number of electrons Ne. Since we are working with
binary numbers, we use bitwise operations, which are the most fundamental and the most
efficient machine operations. Algorithm 1.2 provides a few common bit manipulation
functions.

Algorithm 1.1: The Basis class (basis.py). A class using the bit representation for
setting up a many-electron basis for given numbers of orbitals Norb and
electrons Ne.

1 from bit import countBit

2
3 class Basis:

4 def __init__(self , Norb , Ne):

5 self.Norb = Norb # Number of orbitals

6 self.Ne = Ne # Number of electrons

7
8 # Basis configurations (e.g. conf [0]=000011 , conf [7]=010010)

9 self.conf = [iconf for iconf in range(1<<Norb) if countBit(iconf )==Ne]

10
11 # Basis index dictionary (e.g. index [000011]=0 , index [010010]=7)

12 self.index = {iconf: i for (i, iconf) in enumerate(self.conf)}

13
14 self.dim = len(self.conf) # Basis dimension (Norb -choose -Ne)

Algorithm 1.2: Bit manipulations (bit.py).
1 # Given n, count the number of 1’s

2 def countBit(n):

3 return bin(n). count(’1’)

4
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1.2. Representation of a many-electron basis

5 # Given n, test if the i-th bit is set

6 def isBit(n, i):

7 return bool(n&(1<<i))

8
9 # Given n, set the i-th bit

10 def setBit(n, i):

11 return n|(1<<i)

12
13 # Given n, clear the i-th bit

14 def clearBit(n, i):

15 return n&~(1<<i)

16
17 # Given n, toggle the i-th bit

18 def toggleBit(n, i):

19 return n^(1<<i)

Counting the 1-bits:

In Algorithm 1.2, I used bin(n).count(’1’) to count the number of 1’s in a binary
number. It does the following: for a given number, say 34, bin(34) converts the
integer into a binary string (prefixed with “0b”) “100010”. Then, the string calls the
method count(’1’) to count the number of occurrences of “1”. That is inefficient.

If you are familiar with C, there is a built-in function of GCC compiler:

int builtin popcount(unsigned int n)

It uses a processor instruction (if the hardware supports) that counts the 1-bit of n,
which is as fast as one can get on a machine. In Python, one can use the popcount

from the GMP library.

Alternatively, you do this:

1 def countBit(n): # 0<=n <2**32

2 n = n - ((n >> 1) & 0x55555555)

3 n = (n & 0x33333333) + ((n >> 2) & 0x33333333)

4 return (((n + (n >> 4) & 0x0F0F0F0F) * 0x01010101) & 0xFFFFFFFF) >> 24

But nobody understands this crazy code without explanation. This code works for
any unsigned 32-bit integers. Suppose we have

n = 00011010 00110100 10100011 11101000

This algorithm counts 1-bits chunk-wise and in parallel (5 steps for a 32-bit integer):

00︸︷︷︸
0

01︸︷︷︸
1︸ ︷︷ ︸

1

10︸︷︷︸
1

10︸︷︷︸
1︸ ︷︷ ︸

2︸ ︷︷ ︸
3

00︸︷︷︸
0

11︸︷︷︸
2︸ ︷︷ ︸

2

01︸︷︷︸
1

00︸︷︷︸
0︸ ︷︷ ︸

1︸ ︷︷ ︸
3︸ ︷︷ ︸

6

10︸︷︷︸
1

10︸︷︷︸
1︸ ︷︷ ︸

2

00︸︷︷︸
0

11︸︷︷︸
2︸ ︷︷ ︸

2︸ ︷︷ ︸
4

11︸︷︷︸
2

10︸︷︷︸
1︸ ︷︷ ︸

3

10︸︷︷︸
1

00︸︷︷︸
0︸ ︷︷ ︸

1︸ ︷︷ ︸
4︸ ︷︷ ︸

8︸ ︷︷ ︸
14

Explicitly, the 5 steps are:
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1. Many-electron states

1 def countBit(n): # 0<=n <2**32

2 n = (n&0 x55555555) + ((n>> 1)&0 x55555555)

3 n = (n&0 x33333333) + ((n>> 2)&0 x33333333)

4 n = (n&0 x0F0F0F0F) + ((n>> 4)&0 x0F0F0F0F)

5 n = (n&0 x00FF00FF) + ((n>> 8)&0 x00FF00FF)

6 n = (n&0 x0000FFFF) + ((n> >16)&0 x0000FFFF)

7 return n

With some arguments, one can show that those 5 steps can be simplified (and uglified)
to the algorithm shown above (to push the algorithm to the extreme).

However, we are not focusing too much on the performance here. The priority is to
explain how things can be implemented in principle. I would at the moment stay with
bin and count, which is easy to read and works for an arbitrary-length integer.

The Basis class in Algorithm 1.1 is defined for setting up a general many-electron basis.
It doesn’t specify the physical meanings for each one-electron orbital. For example, when
we discuss the LS-coupling and jj-coupling schemes in Chapter 4, we will define sub-
classes (Algorithms 4.1 and 4.3) that inherit from the Basis class. They additionally
assign the one-electron orbitals with their physical meanings.

Given a many-electron basis, we can represent a general many-electron state in the basis
as a vector. The vector lives in the Hilbert space, whose dimension is given by

dimH =

(
Norb

Ne

)
(1.11)

For large problem sizes, such a dimensionality makes it practically impossible to store a
many-electron state. Table 1.1 shows the growth of the dimension in the Hilbert space
for half-filled systems with Norb number of orbitals. Simply by looking at the number of
digits, we see that the growth of dimH is exponential. Consider a Hubbard model with
20 sites with 2 orbitals per site (one for spin-up and one for spin-down), and the system
is half-filled. That corresponds to a system with 40 orbitals and 20 electrons. For such a
system, one needs a terabyte for storing a “single vector” in the double-precision floating
point format.

Slater determinants:

If needed, we can express the many-body basis states in real-space as Slater determi-
nants. For instance, (with a phase convention)∣∣∣∣ 5 4 3 2 1 0

• •

〉
7→ Φ1,5(x1,x2) =

1√
2

(ϕ1(x1)ϕ5(x2)− ϕ5(x1)ϕ1(x2)) (1.12)

However, expressing a many-electron Slater determinant for more than two electrons
will be “factorially” complicated due to the antisymmetrization with respect to the
real-space coordinates.

Many-body states are most conveniently expressed in the second quantization lan-
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1.3. Representation of one- and two-body Hamiltonians

guage. For the example above, we simply write (here the phase convention enters in
the way that the orbital-index ordering has to be fixed)∣∣∣∣ 5 4 3 2 1 0

• •

〉
7→ c†5c

†
1 |0〉 (1.13)

Note that the “bit representation” was introduced to label the many-body basis states.
To actually work with the states, we use second quantization [5].

Table 1.1.: Dimension of Hilbert space for given Norb and Ne. The column dimH shows a
fast growth in the logarithmic scale. The corresponding computer memories
required for storing a “vector” (using double-precision) in the Hilbert space
are given in the last column.

Norb Ne dimH memory
2 1 2 16 B
4 2 6 48 B
6 3 20 160 B
8 4 70 560 B

10 5 252 2 kB
12 6 924 7 kB
14 7 3432 27 kB
16 8 12870 103 kB
18 9 48620 389 kB
20 10 184756 1 MB
30 15 155117520 1 GB
40 20 137846528820 1 TB
50 25 126410606437752 1 PB

1.3. Representation of one- and two-body Hamiltonians

Hamiltonians (more generally speaking, hermitian operators) can be categorized by “the
physical nature of the number of particles involved”. For example, in the many-electron
Schrödinger equation (1.4):

1. The one-body operators are the kinetic Hamiltonian and the external potential
Hamiltonian:

HK =
Ne∑
i=1

−1

2
∇2
i and Hext =

Ne∑
i=1

Vext(ri)

which operate on all individual electrons. If we extend our discussion to the spin-
orbit interaction, the spin-orbit Hamiltonian is also a one-body operator (see (4.3)).

9



1. Many-electron states

2. The two-body operator is the Coulomb Hamiltonian:

HU =
∑
i<j

1

|ri − rj|

which operates on all pairs of electrons.

Consider a general one-body Hamiltonian H1 and a general two-body Hamiltonian H2.
In real-space (also called the first quantization), we write the general forms (including the
spin coordinate):

H1 =
Ne∑
i=1

h(xi) and H2 =
∑
i<j

v(xi,xj) (1.14)

Because electrons are identical, there must be a restriction that v is symmetric in the
arguments: v(xi,xj) = v(xj,xi).

In second quantization, they are expressed as [5]:

H1 =
∑
αβ

hαβ c
†
αcβ and H2 =

1

2

∑
αβγδ

vαβγδ c
†
αc
†
βcγcδ (1.15)

where hαβ and vαβγδ are the corresponding matrix elements [5]:

hαβ = 〈α|h |β〉 and vαβγδ = (αβ| v |γδ) (1.16)

The one-electron Dirac notation 〈α|h |β〉 is defined as

〈α|h |β〉 ≡
∫
dxϕα(x)h(x)ϕβ(x) (1.17)

We define the two-electron integral notation (αβ| v |γδ) using the “round bracket” as the
matrix element in the basis of the product wave functions: (here enters a choice of ordering
the coordinates)

(αβ| v |γδ) ≡
∫
dx1

∫
dx2 ϕα(x1)ϕβ(x2)v(x1,x2)ϕγ(x2)ϕδ(x1) (1.18)

However, we know that the product wave functions are not the proper two-electron basis
functions. It is tempting to introduce the “real” two-electron integral with the “proper”
basis functions – the two-electron Slater determinants:

v̈αβγδ = 〈αβ| v |γδ〉 (1.19)

The symbol v̈ is chosen with the hope that the “umlaut” reminds us that it is the matrix
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1.3. Representation of one- and two-body Hamiltonians

element under the proper “two-electron” basis. Now,

〈αβ| v |γδ〉 ≡ 1

2

∫
dx1

∫
dx2[

ϕα(x1)ϕβ(x2)− ϕβ(x1)ϕα(x2)
]
v(x1,x2)

[
ϕδ(x1)ϕγ(x2)− ϕγ(x1)ϕδ(x2)

]
=

1

2

[
(αβ| v |γδ)− (αβ| v |δγ)− (βα| v |γδ) + (βα| v |δγ)

]
=

1

2

[
(αβ| v |γδ)− (αβ| v |δγ)− (αβ| v |δγ) + (αβ| v |γδ)

]
= (αβ| v |γδ)− (αβ| v |δγ) (1.20)

In short notations,
v̈αβγδ = vαβγδ − vαβδγ (1.21)

Immediately, we see that v̈αβγδ has the following symmetry properties:

v̈αβγδ = −v̈αβδγ = −v̈βαγδ = v̈βαδγ (1.22)

Because electron-electron interactions are paired, it is actually a more “natural” choice
to use the v̈αβγδ elements, which are defined under the proper two-electron basis. A quick
example is that,

v̈0012 = 0

The Pauli exclusion principle is internally built into the elements. On the other hand,
v0012 (without umlaut) is in general a non-zero element (the Pauli exclusion principle is
ensured by the operation c†0c

†
0 |Ψ〉 = 0).

By pairing the electrons, we can pair the indices (α, β) and (γ, δ) instead of enumerating
over all the possibilities. For instance, we sort the indices as (α < β) and (γ < δ). The
two-body Hamiltonian in (1.15) reduces to

H2 =
∑
α<β
γ<δ

v̈αβγδ c
†
αc
†
βcγcδ (1.23)

Notice that pairing the indices significantly reduces the number of enumerations. For
a system with Norb orbitals, an exhaustive enumeration generates N4

orb tuples of indices.
However, a large number of the indices can be considered as duplicates because of the sym-
metry, e.g. (0, 1, 2, 3) = (1, 0, 3, 2); or unnecessary indices that do not contribute because
of the Pauli principle, e.g. (0, 0, 1, 2). Now, by introducing the pairing, the enumeration

generates only the essential indices. There are
(
Norb

2

)2
= 1

4
N4

orb − 1
2
N3

orb + 1
4
N2

orb of them.

Given a many-electron basis, the many-electron states are represented as vectors. Corre-
spondingly, operators are represented as matrices. To set up the matrix representations
H1 and H2, for each many-body basis state 〈i| and |j〉, we evaluate:

(H1)ij = 〈i|H1 |j〉 =
∑
αβ

hαβ 〈i| c†αcβ |j〉 (1.24)

(H2)ij = 〈i|H2 |j〉 =
∑
α<β
γ<δ

v̈αβγδ 〈i| c†αc†βcγcδ |j〉 (1.25)
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1. Many-electron states

Suppose the matrix elements hαβ (input h) and v̈αβγδ (input vee) are prepared, the Python
routines for setting up H1 and H2 are shown in Algorithm (1.3).

Algorithm 1.3: Matrix representations of a one-body Hamiltonian H1 and a two-body
Hamiltonian H2 in a many-electron basis (hamiltonian.py).

1 from basis import Basis

2 from bit import countBit , isBit , setBit , clearBit

3 import numpy as np

4
5 # Matrix representation of a one -body Hamiltonian

6 def H1(Norb , Ne, h):

7 # Set up basis

8 B = Basis(Norb , Ne)

9
10 # Orbital indices

11 idx = [(a,b) for a in range(Norb) for b in range(Norb)]

12
13 # Set up the matrix representation

14 M = np.zeros((B.dim ,B.dim))

15 for i in range(B.dim): # i (index)

16 iconf = B.conf[i] # conf <i|

17 for (a,b) in idx:

18 if isBit(iconf , a):

19 aconf = clearBit(iconf , a) # conf <i|a’

20 if not isBit(aconf , b):

21 bconf = setBit(aconf , b) # conf <i|a’b = conf |j>

22 j = B.index[bconf] # j (index)

23 # Fermi -sign

24 acount = countBit(aconf&(-1<<(a+1)))

25 bcount = countBit(bconf&(-1<<(b+1)))

26 fsign = 1-2*(( acount+bcount )&1)

27 M[i,j] += fsign*h[a,b]

28 return M

29
30 # Matrix representation of a two -body Hamiltonian

31 def H2(Norb , Ne, vee):

32 # Set up basis

33 B = Basis(Norb , Ne)

34
35 # Orbital indices

36 idx = [(a,b,c,d) for a in range(Norb) for b in range(Norb) if a<b

37 for c in range(Norb) for d in range(Norb) if c<d]

38
39 # Set up the matrix representation

40 M = np.zeros((B.dim ,B.dim))

41 for i in range(B.dim): # i (index)

42 iconf = B.conf[i] # conf <i|

43 for (a,b,c,d) in idx:

44 if isBit(iconf , a):

45 aconf = clearBit(iconf , a) # conf <i|a’

46 if isBit(aconf , b):

47 bconf = clearBit(aconf , b) # conf <i|a’b’

48 if not isBit(bconf , c):

49 cconf = setBit(bconf , c) # conf <i|a’b’c

50 if not isBit(cconf , d):

51 dconf = setBit(cconf , d) # conf <i|a’b’c d = conf |j>

52 j = B.index[dconf] # j (index)

53 # Fermi -sign

54 acount = countBit(aconf&(-1<<(a+1)))

55 bcount = countBit(bconf&(-1<<(b+1)))

56 ccount = countBit(cconf&(-1<<(c+1)))

57 dcount = countBit(dconf&(-1<<(d+1)))

58 fsign = 1-2*(( acount+bcount+ccount+dcount )&1)

59 M[i,j] += fsign*vee[a,b,c,d]

60 return M
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Fermi sign:

When applying creators or annihilators to a state, one must sort the operators in the
“correct” order (phase convention). Because the operators anti-commute, a Fermi
sign (±1) will be generated.

The complete “algebra” of second quantization is described as [5]:

〈0 | 0〉 = 1

cα |0〉 = 0

{c†α, c†β} = 0

{cα, cβ} = 0

{cα, c†β} = 〈α | β〉

(1.26)

Now, consider applying a creator c†2 to a state c†6c
†
4c
†
3c
†
0 |0〉. Our convention is to sort

the orbital indices in an ascending order from right to left. Thus, we need to anti-
commute c†2 with c†6, c†4, and c†3 (swap 3 times). The resulting Fermi sign is (−1)3 = −1.
Explicitly,

c†2c
†
6c
†
4c
†
3c
†
0 |0〉 = (−1)3c†6c

†
4c
†
3c
†
2c
†
0 |0〉

How is this implemented? In the bit representation, we need to count the number of
1-bits “in front of orbital-2”. We can achieve this using a mask:

# 6543210

conf = 1011101

mask = 1111000

count = countBit(conf&mask)

where the mask can be created by shifting a bunch of 1’s to the left: -1<<(i+1) (-1
is represented by “all-bit ones” in two’s-complement representation), where i is the
orbital index (i=2 in the example).

To get the Fermi sign, it is a matter of taking (−1) to the power of the count. One
can optimize this operation using a binary operation:

fsign = 1-2*(count&1)

where (count&1) returns 1 if count is odd, or 0 if count is even.

To set up the matrix representations, the main work is the evaluations of 〈i| c†αcβ |j〉 and

〈i| c†αc†βcγcδ |j〉. The operations are basically taking the inner product of two many-electron
states 〈I |J〉. It is just a matter of perspective to view 〈I | and |J〉, for instance,{

〈I | ← 〈i| c†αc†βcγcδ
|J〉 ← |j〉 or

{
〈I | ← 〈i| c†αc†β
|J〉 ← cγcδ |j〉
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1. Many-electron states

In either case, 〈I | and |J〉 are states with the same number of electrons. Given the “rules”
in (1.26) and the assumption that the one-electron orbitals are orthonormal, it follows
that 〈I | and |J〉 must have the same configuration, such that 〈I |J〉 6= 0. If 〈I | and |J〉
have the same configuration, their inner product is simply a Fermi sign (±1).

The routines in Algorithm 1.3 are general for setting up the matrix representations for one-
and two-body Hamiltonians in a many-electron basis. To be system specific, the physical
information enters via the matrix elements hαβ and v̈αβγδ. In Chapter 5, we are going to
investigate trends of the matrix elements for the spin-orbit Hamiltonian (one-body) and
the Coulomb Hamiltonian (two-body) for realistic atomic basis orbitals.

Because the Hilbert space dimension is in general huge, the corresponding matrix represen-
tations are “huge-squared”. But, the matrix representations are, in general, very sparse.
The reason of the “sparseness” is the following: Consider the operation 〈i| c†αc†βcγcδ |j〉. It
is always zero if the configurations of 〈i| and |j〉 differ by three electrons (or more). For
instance, (

〈0|c1c2c3

)
c†αc
†
βcγcδ

(
c†6c
†
5c
†
4|0〉
)

= 0 ∀ (α, β, γ, δ)

since 〈0|c1c2c3 and c†6c
†
5c
†
4|0〉 differ by three electrons, there is no (α, β, γ, δ) to bring the

two to the same configuration.

Methods like the Lanczos [7] are suited for dealing with large sparse Hamiltonians. For
relatively small systems, we can set up the sparse matrix representations and perform a
Lanczos diagonalization. The restrictions are the available computer memory. Due to
the huge memory consumption of exact diagonalization methods, it can be understood
that various methods have been developed to tackle many-body problems from different
perspectives. However, there exist precious systems in which the many-body Hamiltonians
can be solved analytically. In Chapter 4, we discuss the atomic open-shell problems, where
the systems can be solved analytically (up to seniority) without setting up a matrix
representation. In Chapter 6, we discuss an analytical approach to compute moments of
general one- and two-body Hamiltonians.
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2.1. The tight-binding Hamiltonian

We have discussed in the beginning of Chapter 1: while one-body Hamiltonians are exactly
solvable, two-body Hamiltonians give rise to the real “many-body” challenges. The tight-
binding Hamiltonian is simply one-body :

H =
∑
αβ

(−tαβ)c†αcβ (2.1)

How about the missing two-body term that describes the electron-electron interaction?
This is to be understood in a mean-field picture: the complicated electron-electron inter-
action is treated effectively as a single electron interacting with a mean-field potential.
In a mean-field approximation, the two-body term reduces to a one-body term plus some
“two-body leftover”. In the tight-binding method, the “two-body leftover” is dropped, or
it can be treated later as a perturbation.1

Being an effectively non-interacting system (a one-electron problem), the tight-binding
Hamiltonian is easy to solve. The nightmare with the huge Hilbert space dimension
dim =

(
Norb

Ne

)
collapses to dim = Norb. Tight-binding method is practical, and it is

typically used for describing band structures in solids where the electron correlations are
less important.

Now, let’s take a close look at the matrix element (−tαβ). This can be easily illustrated
using a simple two-site model: consider a hydrogen molecule ion H+

2 , which consists of a
single electron and two protons (site 1 and 2):

1 2

The one-electron Hamiltonian reads,

H = −1

2
∇2 + V1(r) + V2(r) (2.2)

Since this is a one-electron problem, and the Hamiltonian does not involve spins, the
up-spin and down-spin spaces simply factorize. To set up the one-electron basis, we only

1The two-body terms are crucial for strongly correlated systems where the two-body interactions are
necessary for describing the materials. This class of materials includes many transition metal oxides.
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2. The tight-binding method

need to consider orbitals with the same spin. Thus, we write down,

|gs〉 = a1 |1s1〉+ a2 |1s2〉 7→
[
a1

a2

]
(2.3)

In the basis, there are two different kinds of matrix elements:

−t11 = 〈1s1|H |1s1〉 and −t12 = 〈1s1|H |1s2〉

The first one is called the on-site energy:

−t11 = 〈1s1| −
1

2
∇2 + V1 + V2 |1s1〉 = ε1s + 〈1s1|V2 |1s1〉 (2.4)

If the two sites are well separated, the on-site energy (−t11) essentially converges to ε1s.

The second one is called the hopping matrix element:

−t12 = 〈1s1| −
1

2
∇2 + V1 + V2 |1s2〉 = ε1s 〈1s1 | 1s2〉+ 〈1s1|V1 |1s2〉 (2.5)

If the two sites are well separated, both the overlap 〈1s1 | 1s2〉 and the integral 〈1s1|V1 |1s2〉
become very small due to the exponential decaying behavior of the wave functions. The
hopping matrix element (−t12) drops quickly as a function of site distance. That is why
one often makes the simplification (on a lattice) that “an electron only hops to its nearest
neighbors”. We can pretty well let the electron hop to further neighbors, but just with a
much weaker hopping matrix element.

I haven’t explained why the matrix element (−tαβ) carries a mysterious minus sign. To
explain that, we need to diagonalize the Hamiltonian. At this moment, we assume that
the two basis orbitals are orthonormal, so that we have a simple eigen-value problem
instead of a generalized one. Now, the matrix representation of the Hamiltonian:

H =

[
−t11 −t12

−t21 −t22

]
=

[
X Y
Y X

]
(2.6)

This matrix has two eigen-states:

E1 = X + Y, v1 =
1√
2

[
1
1

]
(2.7)

E2 = X − Y, v2 =
1√
2

[
1
−1

]
(2.8)

Here comes the physics : we know that a wave function with more “nodes” corresponds
to a higher energy state (this is something one can’t explain with pure algebra). Here v1

has zero node but v2 has one node, it must be that E2 > E1, which means Y is negative.
In other words, −t12 and −t21 are negative. So the hopping matrix elements come with
negative signs by the nature of physics.
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2.2. Bloch’s theorem

2.2. Bloch’s theorem

H+
2 was simple enough. But if we are talking about real materials that contain an Avo-

gadro number of sites, even for a one-electron system, the basis is too large. Here comes
Bloch’s theorem that vastly simplifies the problem when a periodic potential is presented.
The idea is, if we have a unit cell which repeats periodically,

then the solution should also repeat periodically from cell to cell:

Well, not completely true. The wave function repeats periodically up to a phase (a unit
complex constant):

Now, we go through Bloch’s theorem more mathematically: Consider a periodic potential

V (r + a) = V (r) (2.9)

Let T (a) be the translation operator

T (a) |ϕ(r)〉 = |ϕ(r + a)〉 (2.10)

The eigen-energy of the system shouldn’t be changed (while the wave function will be
changed by a phase) under a translation a:

〈ϕ(r)|H |ϕ(r)〉 = E = 〈ϕ(r + a)|H |ϕ(r + a)〉 (2.11)

which means,
H = T †(a)HT (a) (2.12)

Eqn. (2.12) is equivalent to the relation that the two operators commute

[T (a), H] = 0 (2.13)

Therefore, if we know the eigen-functions of T (a), then we know the eigen-functions of
H. So, what are the eigen-functions of T (a)? They are:

ϕk(r) = eik·r︸︷︷︸
phase

u(r)︸︷︷︸
periodic

(2.14)

where u(r + a) = u(r). Pictorially,
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2. The tight-binding method

eik·r =

u(r) =

Function (2.14) is called the Bloch wave. It consists of a plane wave phase component
and a periodic function with the same periodicity as the lattice structure. We can easily
confirm that the Bloch waves are indeed the eigen-functions of the translation operator:

T (a)ϕk(r) = T (a)eik·ru(r) = eik·(r+a)u(r + a) = eik·aeik·ru(r) = eik·a︸︷︷︸
const.

ϕk(r) (2.15)

2.3. One-dimensional lattice problem

We are now in a position to solve the tight-binding model on the simplest lattice: a 1D
chain of repeating hydrogen nuclei. This chain has an infinite number of sites. At each
site, we only consider an 1s orbital of the same spin. In the entire system, only one
electron is presented.

a

j−1 j j+1

Here comes the power of Bloch’s theorem: we can easily construct the eigen-states of
the periodic system. The first step, we write down the “periodic component”, which is
a simple summation of all basis orbitals: (in this case N = ∞, infinite system size, not
normalizable)

u(r) 7→ 1√
N

∑
j

c†j |0〉 (2.16)

The second step is to add the “phase components” onto each site:

ϕk(r) = eik·ru(r) 7→ 1√
N

∑
j

eik·rjc†j |0〉 = c†k |0〉 (2.17)

which is the Bloch wave represented in an orbital basis. Now, we shall confirm that c†k |0〉
are indeed the eigen-states of the system. Because of the translational symmetry, we can
write the tight-binding Hamiltonian in the form:

H =
∑
jξ

(−tξ)c†j+ξcj (2.18)

where j is the site index, and ξ denotes j’s neighbor. Notice that (−tξ) is independent of
j, but only depends on how far the neighbor is. Now,

Hc†k |0〉 =

(∑
j′ξ

(−tξ)c†j′+ξcj′
)(

1√
N

∑
j

eik·rjc†j |0〉
)

=
1√
N

∑
jξ

(−tξeik·rj)c†j+ξ |0〉 (2.19)
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2.3. One-dimensional lattice problem

Re-labelling the index j ← j+ξ, we obtain,

Hc†k |0〉 =
1√
N

∑
jξ

(−tξeik·(rj−rξ))c†j |0〉 =
∑
ξ

(−tξe−ik·rξ)︸ ︷︷ ︸
Ek

( 1√
N

∑
j

eik·rjc†j |0〉︸ ︷︷ ︸
c†k|0〉

)
(2.20)

Evidently, c†k |0〉 is an eigen-state of H with the eigen-energy

Ek =
∑
ξ

(−tξe−ik·rξ) (2.21)

The above result is also true for lattices with higher dimensions. In this example, we
simply have:

k · rξ = k · (ξa) = ξka

Let’s say the matrix elements have the form

−tξ =


ε if ξ = 0

−t if ξ = ±1

−t′ if ξ = ±2

0 otherwise

(2.22)

Accordingly, the eigen-energy reads: (plotted in Fig. 2.1)

Ek =
2∑

ξ=−2

(−tξe−iξka) = ε− 2t cos (ka)− 2t′ cos (2ka) (2.23)

Figure 2.1.: Energy band of a one-dimensional lattice with parameters ε = 0, t = 1,
t′ = 0.3. Dashed interval: the first Brillouin zone.
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2. The tight-binding method

Apparently, the energy band in Fig. 2.1 has a period 2π
a

. One period of the k region is
called a Brillouin zone. Within a Brillouin zone, all k vectors correspond to distinct eigen-
states. However, once moving out a Brillouin zone, we start to reproduce old eigen-states.
That is in fact a bit counter-intuitive: larger magnitude in k means higher momentum
and thus should point to a higher energy state. That is true for continuous space. On a
lattice, a low momentum state can be the same as a high momentum state. How is that
possible? If we compare the two waves in the complete real space, they are indeed different
(see Fig. 2.2). But if we only look at wave functions at the grid points, the oscillation
between two grid points does not contribute.

(a) k0 (b) k0 + 2π
a (c) Grid view

Figure 2.2.: Two Bloch waves with momentum k0 and k0+ 2π
a

, respectively. They represent
the same state on the grid.

In our infinite lattice chain problem, all continuous k values are allowed. Very often people
will impose a periodic boundary condition, which says, the chain has a finite number of
sites; and at the “N + 1” site, the wave function must have the same value as on the first
site. This is like wrapping the chain around to form a ring. This new problem is almost
the same as the chain with infinite sites. The only difference is that, due to the boundary
condition, not all k’s are allowed, they are now quantized. Because we need to match the
phase on the connecting points:

eik(N+1)a = eika ⇒ kNa = 2πn (2.24)

Within a Brillouin zone [0, 2π
a

), the allowed values are

k = 0× 2π

Na
, 1× 2π

Na
, 2× 2π

Na
, · · · , (N − 1)× 2π

Na

Attention: do not confuse the two concepts

• Periodic potential: Wave functions match up to a phase.

• Periodic boundary condition: Wave functions match completely.

I would like to revise our problem from the matrix-vector point of view. To work with
matrices and vectors, we only solve problems with finite sizes. The 6-site ring system
(Fig. 1.1) that we discussed in the beginning of Chapter 1 would be an ideal candidate.
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2.4. Multi-band one-dimensional lattice problem

Assuming the electron hops up to the second nearest neighbor, the matrix representation
of the Hamiltonian reads,

H =

H |1s1〉 |1s2〉 |1s3〉 |1s4〉 |1s5〉 |1s6〉
〈1s1| ε −t −t′ −t′ −t
〈1s2| −t ε −t −t′ −t′
〈1s3| −t′ −t ε −t −t′
〈1s4| −t′ −t ε −t −t′
〈1s5| −t′ −t′ −t ε −t
〈1s6| −t −t′ −t′ −t ε

(2.25)

If we came across such a matrix and we didn’t know the physics, most likely we would
throw the matrix to an eigen-solver and obtain results numerically. Now, with Bloch’s
theorem, we immediately write down the eigen-vectors,

vk =
1√
6


eik0a

eik1a

eik2a

eik3a

eik4a

eik5a

 (2.26)

From a simple matrix-vector multiplication, we get (using B.C. ⇒ eik5a = e−ik1a, etc.)

Hvk =
1√
6


εeik0a − t(eik1a + eik5a)− t′(eik2a + eik4a)
εeik1a − t(eik2a + eik0a)− t′(eik3a + eik5a)
εeik2a − t(eik3a + eik1a)− t′(eik4a + eik0a)
εeik3a − t(eik4a + eik2a)− t′(eik5a + eik1a)
εeik4a − t(eik5a + eik3a)− t′(eik0a + eik2a)
εeik5a − t(eik0a + eik4a)− t′(eik1a + eik3a)

 = [ε− 2t cos(ka)− 2t′ cos(2ka)] vk

(2.27)
which agrees with the result in (2.23).

2.4. Multi-band one-dimensional lattice problem

How does Bloch’s theorem work if one unit cell contains many orbitals? Consider a
variation of the one-dimensional lattice:

α β α β α β α β α β

2a

It is similar to the one-dimensional lattice problem that we have discussed, but on every
second site, the nucleus α is replaced by nucleus β. On this new lattice, the primitive
vector is no longer a, but 2a. A unit cell groups one α and one β together.
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2. The tight-binding method

e−ik·4a e−ik·2a 1 eik·2a eik·4a

j−2 j−1 j j+1 j+2

For this lattice system, we have Bloch states for α and β orbitals, respectively,

c†kα |0〉 =
1√
N

∑
j

eik·rjc†jα |0〉 (2.28)

c†kβ |0〉 =
1√
N

∑
j

eik·rjc†jβ |0〉 (2.29)

They are not the eigen-states, but they form a (2-dimensional) basis of the system. Now
we construct the matrix representation of the Hamiltonian in the basis. Here we assume
the hopping element between adjacent α-β is (−t); the hopping elements between two
nearest α-α and β-β are (−t′α) and (−t′β), respectively. Further hoppings are ignored.
The matrix representation reads,

H =

[
εα − t′α

(
e−2ika + e2ika

)
−t
(
1 + e−2ika

)
−t
(
1 + e2ika

)
εβ − t′β

(
e−2ika + e2ika

)] (2.30)

Diagonalizing the matrix, we obtain two energy bands:

Ek =
1

2

[
A+B ±

√
(A−B)2 + 4C

]
(2.31)

where,

A = εα − 2t′α cos (2ka)

B = εβ − 2t′β cos (2ka)

C = t2(2 + 2 cos (2ka))

Now we put some numbers to see the behavior of the two energy bands. Let’s say,

εα = 0, εβ = 0.5︸ ︷︷ ︸
on site

, t = 1︸ ︷︷ ︸
1st neighbor

, t′α = 0.2, t′β = 0.4︸ ︷︷ ︸
2nd neighbor

The corresponding energy bands are plotted in Fig. 2.3. We have two bands since there
are two orbitals per unit cell. Now you might ask, what happens if α and β were actually
the same nuclei? Let’s say,

εα = εβ = 0︸ ︷︷ ︸
on site

, t = 1︸ ︷︷ ︸
1st neighbor

, t′α = t′β = 0.3︸ ︷︷ ︸
2nd neighbor

This actually recovers the one-dimensional lattice problem that we discussed in the pre-
vious section. And the corresponding two energy bands are plotted in Fig. 2.4. However,
there is a subtle difference in the interpretation. The point is, since we grouped α, β to
one cell, the “lattice” that we are referring is coarser. The Brillouin zone has a range
[0 π

a
), which is as half as before. But now for each k, we have two states. So the number

of states is doubled while the Brillouin zone is halved.
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2.5. The electronic structure of graphene

Figure 2.3.: Energy bands of a one-dimensional αβαβ-chain with parameters εα = 0,
εβ = 0.5, t = 1, t′α = 0.2, t′β = 0.4. Dashed interval: the first Brillouin zone.

Figure 2.4.: Energy bands of a one-dimensional αβαβ-chain with parameters εα = εβ = 0,
t = 1, t′α = t′β = 0.3. Dashed interval: the first Brillouin zone. Fig. 2.1 and
Fig. 2.4 describe the same physics with two different perspectives.

2.5. The electronic structure of graphene

Graphene is a single two-dimensional layer of carbon atoms arranged in a hexagonal
lattice.2 Attributable to its many uncommon properties, graphene has been extensively
studied for years. The material was isolated for the first time in 2004 by Andre Geim and
Konstantin Novoselov at the University of Manchester [8]. Andre Geim and Konstantin
Novoselov won the 2010 Nobel Prize in Physics “for groundbreaking experiments regarding

2Graphite, the most common allotrope of carbon, is basically a stack of graphene layers held together
with weak bonds.
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2. The tight-binding method

the two-dimensional material graphene”. Besides the novelties, it might be surprising that
the electronic structures of graphene can be easily and successfully described by the tight-
binding method.

On a graphene, each carbon atom is about (a = 1.42 Å = 2.68 Bohr radius) apart from
its three neighbors [9]. A carbon atom has the electronic structure 1s2 2s2 2p2. The
two electrons in the 1s-shell have quite low energy. They can be considered as localized
inside the atoms. Three electrons from 2s, 2px, 2py form the sp2 hybrid orbitals. They
contribute to the three 120◦-σ-bonds. The remaining one electron is in the 2pz orbital,
which contributes to the π-bond. The π-π interactions among the half-filled 2pz orbitals
give the energy bands that are responsible for most of the electronic properties of graphene.

Now, we label half carbon atoms as α and half as β, and group them into cells. Why
should we distinguish α and β although they are both carbon atoms? Because that is
how the periodicity goes: If we translate α’s onto β’s, then the β’s will fall into the center
of hexagons. The periodicity translates α’s to α’s.

a

b
cell

This system has the lattice vectors:

A =
[
a b

]
= a

[ 3
2

3
2√

3
2
−
√

3
2

]
(2.32)

To simplify our problem, we restrict the electron to hop only to the nearest neighbors.
Now we focus on one unit cell (with its nearest neigbours):

1

eik·ae−ik·b

eik·be−ik·a
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Choosing the α-Bloch state and the β-Bloch state as our basis states:

c†kα |0〉 =
1√
N

∑
j

eik·rjc†jα |0〉 (2.33)

c†kβ |0〉 =
1√
N

∑
j

eik·rjc†jβ |0〉 (2.34)

The matrix representation of the Hamiltonian reads:

H =

[
ε −t

(
1 + e−ik·a + e−ik·b

)
−t
(
1 + eik·a + eik·b

)
ε

]
(2.35)

We obtain the two energy bands:

Ek = ε± t
√

3 + 2 cos(k · a) + 2 cos(k · b) + 2 cos(k · (a− b)) (2.36)

(a) Energy bands surface plot (b) Contour plot of the upper band

Figure 2.5.: (a) Energy bands of a two-dimensional graphene with parameters ε = 0 and
t = 1. (b) The contour plot of the upper energy band surface. The area
enclosed by the red parallelogram is a Brillouin zone. Two kc points at the
center of two Dirac cones are marked as red dots.

The two energy bands are plotted as surfaces on the (kx, ky) coordinate in Fig. 2.5a, and
the upper band is plotted as contour in Fig. 2.5b. Because the system is half-filled (1
electron in 2pz), the upper and lower bands correspond to the conduction and valence
bands, respectively. At the points where the two bands touch, they form the Dirac cones.
Unlike insulators, there is no gap between the two bands; Unlike metals, there is no
partially-filled band. Thus graphene is known as a zero-gap semiconductor (or semi-
metal). The presence of the Dirac cones contributes to many impressive physical and
electronic properties [9, 10].
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2. The tight-binding method

Reciprocal lattice vectors:

Fig. 2.5b shows a contour plot of the upper energy band. The parallelogram formed
by the reciprocal lattice vectors ka and kb encloses a Brillouin zone. ka and kb can be
somehow observed from the contour plot. But how does one actually calculate them,
for a given set of lattice vectors? The idea is the following:

If two k vectors are reproducing the same state, their dot product with each lattice
site vector should be equal up to a multiple of 2π (recall Fig. 2.2).

k1 · ri = k2 · ri + 2πn

k1 · (Ai) = k2 · (Ai) + 2πn

(k2 − k1) · (Ai) = 2πn

(Gj) · (Ai) = 2πn

jTGTAi = 2πn

Because i and j are arbitrary integer vectors, we have

GTA = 2π ⇒ G = (2πA−1)T (2.37)

Therefore, for a given lattice vector set A, we compute the reciprocal lattice vector set
by taking inverse and transpose. Also note that the reciprocal lattice of a reciprocal
lattice is the real space lattice itself: (2πG−1)T = A.

The lattice vectors of graphene are:

A =
[
a b

]
= a

[ 3
2

3
2√

3
2
−
√

3
2

]
(2.38)

The corresponding reciprocal lattice vectors are, therefore,

G =
[
ka kb

]
= (2πA−1)T =

2π

a

[ 1
3

1
3√

3
3
−
√

3
3

]
(2.39)

which are the two vectors shown in Fig. 2.5b.

2.6. Carbon nanotube

Because of the zero-gap between the conduction and valence bands created by the π-
bonds, graphene shows an efficient electrical conductivity. The conduction and valence
bands “touch” at the k-points where the Dirac cones are formed. However, if boundary
conditions are introduced and the k’s are consequently quantized, the system could be
either conducting or semiconducting, depending on the allowed k’s. To be conducting,
the allowed k’s must include the Dirac cones. Let’s first check where the “cones” are.
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2.6. Carbon nanotube

Eqn. (2.36) tells us that the “touching points” are at the kc points such that

3 + 2 cos(kc · a) + 2 cos(kc · b) + 2 cos(kc · (a− b)) = 0 (2.40)

To solve for kc, we first make an ansatz (hint from Fig. 2.5b):

kc = α(ka − kb) (2.41)

where ka and kb are the reciprocal lattice vectors. Hence, (use the orthogonal relation
between real lattice vectors and reciprocal lattice vectors)

3 + 2 cos(2πα) + 2 cos(−2πα) + 2 cos(4πα) = 0

3 + 4 cos(2πα) + 2 cos(4πα) = 0

4 cos2(2πα) + 4 cos(2πα) + 1 = 0

cos(2πα) = −1

2
⇒ α = ±1

3
(2.42)

Therefore,

kc = ±1

3
(ka − kb) (2.43)

And we can translate them in integer multiples of ka and kb: (i, j ∈ Z)

kc = ika + jkb ±
1

3
(ka − kb) (2.44)

Now we would like to introduce some boundary condition. We fold the graphene sheet
around to make a carbon nanotube. This “roll-up” follows one direction, called the chiral
vector:

Ch = ma + nb (2.45)

a

b

m
=

3
n =

2

Ch = ma + nb

Here we need some visual-spatial imagination: (can you imagine?)
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2. The tight-binding method

Figure 2.6.: Structure of carbon nanotubes depending on the roll-up direction. Image
from: https://coecs.ou.edu/Brian.P.Grady/nanotube.html.

• If Ch = ma +mb, the roll-up gives armchair-like ends;

• If Ch = ma or Ch = nb, the roll-up gives zig-zag ends;

• Otherwise, the ends are a bit tilted.

Once the graphene is rolled up, we have a well defined periodic boundary condition:
(l ∈ Z)

k ·Ch = 2πl (2.46)

This defines the allowed k’s. If the allowed k’s contain kc (2.44), then kc must fulfill
(2.46): (i, j, l,m, n ∈ Z)

kc ·Ch = 2πl[
(i± 1

3
)ka + (j ∓ 1

3
)kb

]
· [ma + nb] = 2πl

im± 1

3
m+ jn∓ 1

3
n = l

±1

3
(m− n) = l

m− n = 3l (2.47)

The simple relation (2.47) leads to the following statement:

• The conductance of a carbon nanotube depends on the chiral vector Ch = ma+nb.

– If m−n is an integer multiple of 3, the tube is conducting (the conduction and
valence bands touch);

– Otherwise, the tube is semiconducting (the conduction and valence bands have
a gap);
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2.6. Carbon nanotube

Some quick facts: armchair tubes are always metallic because m = n; zig-zag tubes are
sometimes metallic, depending on whether or not m or n is an integer multiple of 3.

In Fig. 2.7, we visualize the allowed k’s in one Brillouin zone, for different cases of (m,n).
Notice that due to the boundary condition, the k-surface is discretized to k-lines. One
can verify that for a given (m,n), whether or not the k-lines include the kc’s at the Dirac
cones.

(a) m = 8, n = 0 (semi) (b) m = 7, n = 1 (meta) (c) m = 0, n = 8 (semi)

(d) m = 4, n = 4 (meta) (e) m = 4, n = −4 (semi) (f) m = −2, n = 7 (meta)

Figure 2.7.: Allowed k’s in one Brillouin zone. If the allowed k’s (blue lines) go cross the
Dirac cones (red dots), the system is metallic (meta); otherwise semiconduct-
ing (semi).
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3. Self-consistent field solver for atomic
systems

3.1. The starting point

In the previous chapter, we discussed the tight-binding method with some testing numer-
ical values for the matrix elements to demonstrate the concepts. Certainly, for construct-
ing realistic model Hamiltonians, we need realistic basis functions and the corresponding
matrix elements. The starting point of this thesis is density functional calculations for
individual atoms and ions to obtain realistic basis orbitals.

The purpose of this chapter is to develop and document a self-consistent field (SCF)
solver that solves the atomic systems in the framework of density functional theory (DFT)
[11, 12]. The main work during the development is to build an efficient and robust eigen-
state solver that solves for the atomic orbitals. We use techniques such as Numerov’s
method and the first-order perturbation theory to achieve high-order numerical accuracy
and fast convergence rate for the eigen-state solutions. Our aim is to build an elegant
and compact code for the SCF calculations. By the end of this chapter, we should have
a clear and well explained working Python code.1

3.2. Hydrogen-like system

To start with, we solve the one-electron or hydrogen-like system numerically, for which we
can compare the results with the analytical solutions. After a reliable solver is developed,
we extend the program to solve a general atomic system in the Kohn-Sham [12] approach.
Although the solutions for hydrogen-like systems are known analytically (see Appendix A),
solving the problem numerically is not a trivial task. The main points are:

1. How to properly discretize the grid in space;

2. How to properly integrate the differential equation;

3. How to obtain the eigen-energies efficiently and accurately.

1By default, we use Python version 3.
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3. Self-consistent field solver for atomic systems

For a hydrogen-like system, the Schrödinger equation (in a.u.) reads,[
−1

2
∇2 + V (r)

]
ϕ = Eϕ (3.1)

where V (r) = −Z/r is the (spherically symmetric) nuclear potential. By separation of
variables ϕ(r, θ, φ) = R(r)Y (θ, φ), Eqn. (3.1) splits into two equations, namely,

Radial equation:
d

dr

(
r2dR

dr

)
− 2r2 [V (r)− E]R = l(l + 1)R (3.2)

Angular equation:
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2
= −l(l + 1)Y (3.3)

Solutions of the angular equation (3.3) are the well known spherical harmonics. Our
task is to solve (3.2) numerically, as later we will replace V (r) by an effective mean-field
potential VKS(r). Here we introduce a change of variables u(r) ≡ rR(r). As a result, the
radial equation (3.2) simplifies dramatically to the form of a one-dimensional Schrödinger
equation: [

−1

2

d2

dr2
+ V (r) +

l(l + 1)

2r2

]
u = Eu (3.4)

with asymptotic behaviors: (this helps us to set up the initial integration values)

u(r) ∝ rl+1 as r → 0 (3.5)

u(r) ∝ e−κr, κ =
√
−2E as r →∞ (3.6)

Our task is to solve (3.4) for the radial wave functions u(r) and the allowed energies E.

Hydrogen-like solutions:

The hydrogen and hydrogen-like solutions are related by a simple “rescaling”.

For a hydrogen atom, Eqn. (3.4) reads,[
−1

2

d2

dr2
− 1

r
+
l(l + 1)

2r2

]
uH(r) = EHuH(r) (3.7)

For a hydrogen-like atom, Eqn. (3.4) reads,[
−1

2

d2

dr2
− Z

r
+
l(l + 1)

2r2

]
uZ(r) = EZuZ(r) (3.8)

Now, if we rescale ρ = Zr and EZ = Z2EH, Eqn. (3.8) becomes,[
−1

2

d2

dρ2
− 1

ρ
+
l(l + 1)

2ρ2

]
uH(ρ) = EHuH(ρ) (3.9)

which is identical to the hydrogen system. Solving (3.9) yields the same eigen-
functions and eigen-values as in solving (3.7). Attention: uH(ρ) solves (3.9), it is,
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3.3. Logarithmic grid

however, not properly normalized:∫ ∞
0

dr |uH(ρ)|2 =
1

Z

∫ ∞
0

dρ |uH(ρ)|2 =
1

Z
(3.10)

Therefore, the hydrogen-like solutions are related to the hydrogen solutions by

uZ(r) = Z
1
2uH(Zr) and EZ = Z2EH (3.11)

See Table A.1 in Appendix A for the explicit formulas.

3.3. Logarithmic grid

Atomic wave functions tend to oscillate stronger around the nucleus. To resolve the sharp
features, our choice is to use a logarithmic grid [13, 14, 15]. A logarithmic grid is certainly
not the unique choice. One can use any adaptive grid as long as it can properly represent
the wave function [13]. The advantage of the logarithmic grid is that it uses a change of
variable technique and the original ODE can be transformed smoothly into an equivalent
ODE problem on a uniform grid.

Define the logarithmic grid: 0 < r0 < r1 < · · · < rN−1 <∞, where

ri =
1

Z
exi (3.12)

r0 rN−1

and x is a uniformly distributed grid

xi = x0 + i∆x (3.13)

x0 xN−1

The factor 1
Z

in (3.12) is used due to the scaling behavior of hydrogen-like solutions.
Notice that we cannot take r0 = 0, as x0 = ln(Zr0) would go −∞. To set up a grid, we
provide four arguments: the atomic number Z; the minimum rmin; the maximum rmax;
and the spacing on the uniform grid dx (we do not input dr, since it is not a constant).

We create a file grid.py, which sets up the Grid object (Algorithm 3.1).

Algorithm 3.1: The Grid class (grid.py).
1 import math

2 import numpy as np

3
4 class Grid:

5 def __init__(self , Z, rmin , rmax , dx):
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3. Self-consistent field solver for atomic systems

6 self.Z = Z # Atomic number

7 xmin = math.log(Z*rmin) # Minimun of x

8 xmax = math.log(Z*rmax) # Maximun of x

9 self.dx = dx # Delta x

10 self.x = np.arange(xmin , xmax , dx) # Uniform grid

11 self.r = np.exp(self.x)/Z # Logarithmic grid

12 self.V = -Z/self.r # Potential on the grid

13 self.N = len(self.r) # Number of grid points

For a given atomic number Z (e.g. Z = 1 for hydrogen), we set up the numerical grid:{
rmin = 10−6/Z; rmax = 50; ∆x = 0.005

}
The choice of the minimum and the maximum of the radial grid rmin = 10−6/Z and
rmax = 50 agrees with Reference [13]. The minimum of the radial grid depends on the
atomic number Z, because the higher the nuclear charge is, the closer the wave function
will be attracted to the origin. On the other hand, the maximum of the radial grid is
fixed. This consideration is from the fact that the size of each atom will be roughly
the same after the self-consistent calculations. The uniform grid resolution ∆x is chosen
to be 0.005. Further increasing of the grid resolution wouldn’t affect the calculations
significantly. As a reference, for the chosen grid set up, the number of grid points # are:

Z = 1 → # = 3546; Z = 10 → # = 4007; Z = 100 → # = 4467

The original problem u on the radial coordinate r can be transformed to a rescaled
problem2 ũ ≡ u/

√
r on the uniform coordinate x. The idea is to replace the second

derivative d2u/dr2 in terms of d2ũ/dx2:

d2u

dr2
= −1

4
r−3/2ũ+ r−3/2d

2ũ

dx2
(3.14)

Substituting (3.14) into (3.4), one obtains[
−1

2

d2

dx2
+ r2V (r) +

1

2

(
l +

1

2

)2
]
ũ = r2Eũ (3.15)

which is the transformed problem. Now, instead of solving the original ODE in (3.4) on
a logarithmic grid, we solve this transformed ODE in (3.15) on the uniform grid. The
advantage is that we can easily discretize the second derivative d2ũ/dx2, since the grid xi
is uniformly spaced. For convenience, we rewrite (3.15) in a more compact way:

d2ũ

dx2
= −k2

i ũi (3.16)

where,

k2
i ≡ 2r2

iE − 2r2
i V (ri)−

(
l +

1

2

)2

(3.17)

2If there weren’t this rescaling, the transformed problem would involve a first-order derivative du/dx,
which would not be suitable for later applying Numerov’s method.
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3.4. Numerov’s method

3.4. Numerov’s method

To discretize d2ũ/dx2, the simplest way is perhaps in the finite-difference form:

d2ũ

dx2
≈ ũi+1 − 2ũi + ũi−1

∆x2
(3.18)

which is numerically accurate up to O(∆x2). If we further expand (3.18), we get higher
order terms:

d2ũ

dx2
=
ũi+1 − 2ũi + ũi−1

∆x2
− 1

12
ũ

(4)
i ∆x2 +O(∆x4) (3.19)

But the fourth derivative ũ
(4)
i can be also written in the finite-difference form:

d2ũ

dx2
=
ũi+1 − 2ũi + ũi−1

∆x2
− 1

12

ũ
′′
i+1 − 2ũ

′′
i + ũ

′′
i−1

∆x2
∆x2 +O(∆x4) (3.20)

Here comes the Numerov trick, instead of treating the second derivative ũ
′′
i in (3.20)

numerically, one can simply replace the ũ
′′
i by the relation from the original ODE in

(3.16). Thus, the second derivative discretizes to

d2ũ

dx2
≈ ũi+1 − 2ũi + ũi−1

∆x2
+

1

12

(
k2
i+1ũi+1 − 2k2

i ũi + k2
i−1ũi−1

)
(3.21)

which is numerically accurate up to O(∆x4). Comparing (3.21) with (3.18), we see that
with the same amount of computational effort, the numerical scheme improves from 2nd-
order to 4th-order accuracy “for free”. That is the power of Numerov’s method. It works
only because the ODE in (3.16) does not involve a first order derivative.

Now we substitute (3.21) into (3.16), we obtain the following relation:

ũi±1 =
(2− 5∆x2

6
k2
i )ũi − (1 + ∆x2

12
k2
i∓1)ũi∓1

1 + ∆x2

12
k2
i±1

(3.22)

which is perhaps the most important formula that will enter into the code. This simple
3-point recursion states that: with the knowledge of ũi−1 and ũi, we can compute ũi+1.
Or from the other direction, compute ũi−1 from ũi and ũi+1.

3.5. The shooting and matching methods

We initialize the wave function values according to the asymptotic behaviors (3.5) and
(3.6), shown in Table 3.1. One could perform Numerov’s integration (3.22) either in the
forward direction starting from initial values ũ0 and ũ1, or in the backward direction
starting from initial values ũN−1 and ũN−2. To ensure numerical stability, we perform
integrations from both the forward and backward directions. On the radial grid, the
forward and backward results will meet at a point, which we call the “matching point”.
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3. Self-consistent field solver for atomic systems

Table 3.1.: Initializations for the forward and the backward wave functions. (κ =
√
−2E)

Initialization

Forward
ũ0 = rl+1

0 /
√
r0

ũ1 = rl+1
1 /
√
r1

Backward
ũN−1 = e−κrN−1/

√
rN−1

ũN−2 = e−κrN−2/
√
rN−2

Because of numerical instability, the wave functions will diverge out quickly if integrating
into classically forbidden regions. Our matching point is therefore chosen to be around
the classical turning point. More specifically, we choose the matching point rM to be the
first grid point (forward direction) which fulfills the condition E ≤ V (ri). The choice
of rM is not very critical: we simply compare the energy E with the monotonic V (r)
which has a unique root at E = V (r), while the “true” classical turning point should

be at E = Veff(r) = V (r) + l(l+1)
2r2

which can have no root, one root, or two roots due to
the centrifugal term, that complicates the problem and is not really necessary. At the
matching point we have two values ũFM and ũBM computed from the forward and backward
Numerov’s integrations, respectively. Naturally, ũFM and ũBM should be equal, as they
represent the same function value. But the initial conditions (Table 3.1) are assigned up to
a scaling, which means a rescaling should be applied to either the forward or the backward
part to match the two pieces. Finally, the resulting wave function should be normalized.
Notice that because of the change of variable (3.12), we have dr = rdx. Additionally,
we are working with the rescaled function ũ ≡ u/

√
r. Thus, the normalization of “ũ”

becomes:

ũ ← ũ/
√∫ +∞

−∞ dx r2|ũ|2 (3.23)

We create a file orbit.py, which contains the Orbit class with its relevant methods
(Algorithm 3.2). At this stage, we provide the shoot method, which takes an arbitrary
energy and produces the corresponding wave function. The method is called “shoot”
because it is the basic function that tries to find an eigen-energy by trial-and-error (like
shooting a basket ball into a basket by trying different throws), which we will explain
soon. There are a couple of technical details that are implemented in the code: If E
is above the maximum value of V (which is an unusual case since we are looking for
bound states), no matching point will exist. In this case, we simply take M=N//2, and
let the forward and backward functions meet in the middle of the grid. Moreover, since
it is not in a bound state, we artificially set an infinite potential well at rN−1, such that
one can still look for the eigen-energy. Another pitfall is in the backward initialization:
the numerical values of ũN−1 and ũN−2 can be extremely small due to the exponential
decaying behavior. Numerically, they can easily go underflow and become zeros (or too
small to have enough significant digits). This issue has to be taken into account in the
program as well.
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3.5. The shooting and matching methods

Algorithm 3.2: A preliminary Orbit class (orbit.py).
1 import math

2 import numpy as np

3 import scipy.integrate as sp

4
5 class Orbit:

6 def __init__(self , G, n, l):

7 self.G = G # Grid

8 self.n = n # Principal quantum number

9 self.l = l # Angular momentum quantum number

10 self.R = np.zeros(G.N) # Radial wave function

11 self.u = np.zeros(G.N) # u = r*R

12 self.E = None # Orbital energy

13 self.M = None # Matching point index

14
15 # Shoot a wave function with given E

16 def shoot(self , E):

17 # Collect attributes (overwrite u to re-use the memory space)

18 (N, dx , r, V, l, u) = (self.G.N, self.G.dx, self.G.r, self.G.V, self.l, self.u)

19
20 # Matching point

21 M = np.where(E<V)[0][0] if E<V[-2] else N//2

22
23 # During the calulation , u is the rescaled u/sqrt(r)

24 # Forward initial condition [0][1]-->

25 u[:2] = r[:2]**(l+0.5)

26 # Backward initial condition <--[end -1][ end]

27 end = N-1

28 if E<V[-2]:

29 # Exponential decay , avoid numerical underflow

30 tail = np.exp(-math.sqrt(abs(2*E))*r)/np.sqrt(r)

31 end = np.where(tail >1e -16)[0][ -1] # After [end], tail too small

32 u[end -1:] = tail[end -1:]

33 else:

34 # Energy too high , use hard boundary condition

35 u[-2:] = [1e-8, 0.0]

36
37 # Numerov method

38 kk = 2*(r**2*(E-V) - 0.5*(l+0.5)**2)

39 A = 2 - dx*dx*5/6*kk

40 B = 1 + dx*dx/12*kk

41 # Forward integration [0][1]-->[M]

42 for i in range(2, M+1):

43 u[i] = (A[i-1]*u[i-1] - B[i-2]*u[i-2]) / B[i]

44 FM = u[M]

45 # Backward integration [M]<--[end -1][ end]

46 for i in range(end -2, M-1, -1):

47 u[i] = (A[i+1]*u[i+1] - B[i+2]*u[i+2]) / B[i]

48 BM = u[M]

49 # Connect forward and backward parts

50 u[M:] *= FM/BM

51
52 # Normalization

53 u /= math.sqrt(sp.simps(r**2*u**2, dx=dx))

54
55 # Collect results and rescale u back to u = r*R

56 (self.R, self.u, self.E, self.M) = (u/np.sqrt(r), u*np.sqrt(r), E, M)

For loops in Python:

It is perhaps a common knowledge that when one writes a code in Python, one should
avoid intensive for loops. For instance, the piece of normalization code is written with

37



3. Self-consistent field solver for atomic systems

simps (Simpson’s rule) from the scipy package, or simply use (but less accurate)
the trapz (Trapezoidal rule) from the numpy package, instead of an explicit for loop
which will reduce both the performance and elegance of the code. Unfortunately, the
piece of Numerov’s iteration has to stay in an explicit loop (at least up to my current
knowledge). The reason is that during the iteration, each step has a dependence to
the results from previous steps, unlike simple operations such as array summations or
mapping to functions, etc..

We are now in a position to run a test. The run.py file is shown in Algorithm 3.3. At
this point, setting up the principal quantum number n has no significance. It does not
play any role in the shoot method. Later, we will use it to compare with the number
of nodes in the wave function to check if the wave function is the one that corresponds
to the quantum numbers n and l. In the test, we set up a hydrogen system (Z = 1)
with a 1s orbital. We test three orbital energies E = −0.6,−0.5,−0.4 (Hartree), and the
resulting wave functions are plotted in Fig. 3.1. On top of the plots, we put the exact
hydrogen 1s orbital (u = 2re−r) in dashed lines as a reference. Analytically, we know
that the 1s orbital has an eigen-energy −1/2 Hartree. Numerically, we see that when the
testing energies differ from the eigen-energy, the resulting wave functions will have a kink
at the matching point. The forward and backward wave functions match smoothly when
the testing energy agrees with the analytical value.

Algorithm 3.3: A test run.
1 from grid import Grid

2 from orbit import Orbit

3 import numpy as np

4 import matplotlib.pyplot as plt

5
6 # Set up grid

7 G = Grid(1, 1e-6, 50, 0.005)

8
9 # Set up orbit

10 orb = Orbit(G, n=1, l=0)

11
12 for E in [-0.6, -0.5, -0.4]:

13 # Shoot with a guess E

14 orb.shoot(E)

15
16 # Plot

17 plt.plot(G.r[:orb.M], orb.u[:orb.M], ’-b’, label=’Forward ’)

18 plt.plot(G.r[orb.M:], orb.u[orb.M:], ’-r’, label=’Backward ’)

19 plt.plot(G.r, 2*G.r*np.exp(-G.r), ’--m’, label=’Exact’)

20 plt.legend(loc=’best’)

21 plt.show()

3.6. Predict ∆E by first-order perturbation theory

Suppose we didn’t know the analytical solution of hydrogen, and we are solving for the
hydrogen 1s orbital. We make a guess E = −0.6 and get the result shown in Fig. 3.1a.
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Figure 3.1.: Three tests of the shoot method with orbital energies E = −0.6,−0.5,−0.4
(Hartree). When the testing energies differ from the eigen-energy, the re-
sulting wave functions will have a kink at the matching point. The forward
and backward wave functions match smoothly when the testing energy agrees
with the analytical value.

We see that there is kink. Now, should we increase the energy a bit, or reduce, and by
how much? How do we make a better guess towards the true eigen-energy?

A simple strategy is to use a “bisection” method that repeatedly halves an energy interval
until a root is reached up to a tolerance. The bisection method is easy to implement and
robust, but it is relatively slow. Here we introduce a new method based on the first-order
perturbation theory which speeds up the root-finding process dramatically.

The idea is the following:

1. We make a guess Ê, which produces a kinked wave function û (to be consistent with
the formalism in (3.22), we shall use the rescaled ˜̂u ≡ û/

√
r in the calculation);

2. û is not an eigen-function of the potential V ;

3. However, since we are working on a discrete grid, the numerical array that represents
û, must be an “eigen-vector” of some unknown potential V̂ ;

4. V and V̂ are related by a perturbation ∆V :

V = V̂ + ∆V (3.24)

5. When Ê is close enough to the true eigen-energy E, according to the first-order
perturbation theory, we can approximate the eigen-energy by

E ≈ Ê + ∆E (3.25)

where,

∆E = 〈û|∆V |û〉 =

∫ ∞
0

dr |û|2∆V =

∫ +∞

−∞
dx r2 |˜̂u|2∆V (3.26)

If we can work out the perturbation potential ∆V , then we can compute the energy
correction ∆E. In practice, we produce an approximated ∆V as described below:
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V k2 û k̂2 V̂ ∆V
(3.17)

(3.22)
shoot

(3.22)
approx. (3.17) (3.24)

Figure 3.2.: Estimate the perturbed potential.

For a given potential V and a guessed energy, we obtain k2 from Eqn. (3.17). Using the
Numerov method (3.22), we obtain the wave function (presumably a kinked one) û from
the shoot and match. Now, we go a step reverse: we produce k̂2 from û, assuming that
k̂2
i = k2

i everywhere except at the matching point M. This assumption implies that the
perturbation ∆V is everywhere zero except at the matching point:

∆Vi = ∆VMδiM (3.27)

In fact, a delta potential produces a kinked wave function (see Griffiths [16] on the delta-
function potential). At the matching point, k̂2

M differs from k2
M, and its value can be

computed from the recursion relation (3.22):

k̂2
M =

6

5∆x2

[
2−

(
1 +

∆x2

12
k2

M+1

) ˜̂uM+1

˜̂uM
−
(

1 +
∆x2

12
k2

M−1

) ˜̂uM−1

˜̂uM

]
(3.28)

From (3.17) and (3.24), we obtain

∆VM = VM − V̂M =
k̂2

M − k2
M

2r2
M

(3.29)

Substitute (3.29) back to (3.26), we conclude, (notice that the domain of the integral
reduces to the small interval at the matching point)

∆E = ∆x r2
M|˜̂uM|2∆VM (3.30)

∆E becomes zeros when ∆VM is zero. The energy correction ∆E is also an indicator
of the smoothness of the wave function. If ∆E ≈ 0, then we know the resulting wave
function is kink-free, which means we have converged to an eigen-state (see Figs. 3.3b and
3.3h). Normally, we do not expect uM = 0, as the matching point is at the classical turning
point, where no node should occur. However, when the number of nodes changes, uM must
change a sign (see Fig. 3.3d), which means uM = 0 does occur at a very critical energy
which is not an eigen-energy. To better explain this matter, I reproduce the hydrogen l = 0
system (was shown in Fig. 3.1) for 9 testing energies and print the corresponding proposed
∆E’s in Table 3.2. We see that, E1s and E2s are eigen-energies (∆E = 0), which are (up
to numerical errors) equal to −0.5 and −0.125, respectively. The neighboring energies
produce ∆E’s that move towards the eigen-energies, thus E1s and E2s are attractive fixed
points. However, Ex is not an eigen-energy although ∆E = 0. The neighboring energies
produce ∆E’s that move away from Ex. In practice, we do not worry about the situations
for Ex as they are unstable points that the iterative solver will not converge to.
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3.6. Predict ∆E by first-order perturbation theory

Table 3.2.: Testing energy E versus proposed ∆E. E1s and E2s are eigen-energies (∆E =
0), which are (up to numerical errors) equal to −0.5 and −0.125, respectively.
The neighboring energies produce ∆E’s that move towards the eigen-energies,
thus E1s and E2s are attractive fixed points. However, Ex is not an eigen-
energy although ∆E = 0. The neighboring energies produce ∆E’s that move
away from Ex.

E ∆E Direction
−0.115 −0.006535 ↓
−0.125 −3× 10−12 ↓
E2s 0 attractive
−0.15 +0.029706 ↑
−0.3 +0.218502 ↑
−0.35 +0.078240 ↑
Ex 0 unstable
−0.375 −0.000144 ↓
−0.4 −0.040794 ↓
−0.5 −6× 10−13 ↓
E1s 0 attractive
−0.6 +0.111559 ↑
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Figure 3.3.: A few testing energies with the corresponding proposed ∆E. The eigen-
energies are E1s = −0.5 and E2s = −0.125. The neighboring energies produce
∆E’s towards the eigen-energies. When the number of nodes changes (around
E = −0.375), ∆E = 0 occurs, which does not represent an eigen-state. The
neighboring ∆E’s do not bring the neighboring energies towards the “fake”
root.
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3.7. The eigen-state solver

3.7. The eigen-state solver

Algorithm 3.2 implemented the basic shoot method in the preliminary Orbit class. In
the test run (Algorithm 3.3), we selected the orbital energy “by hand”. In this section,
we provide the complete Orbit class (Algorithm 3.4) that implements the perturbation
theory and solves for the eigen-state automatically.

Searching for the eigen-energy is a root-finding process. Ideally, if the guessed energy
is close enough to the eigen-energy, by simple iterations, the solution will converge au-
tomatically to the eigen-state. This simple algorithm is implemented in the method
shootrepeat. It takes an initial guess of the orbital energy Ei, and iterates a few times
trying to converge ∆E to a given tolerance. Certainly, shootrepeat only works if Ei

is already close to the root. It doesn’t work for a random guess. Later, when we solve
for the self-consistent field problem, shootrepeat plays an important role which dramat-
ically improves the root-finding efficiency. Because during the self-consistent field loop,
the eigen-energies of the orbitals in the current iteration are usually very close to the
eigen-energies from the pervious step, which are the ideal input values for Ei.

In general, to solve for a single eigen-state, we should provide an energy window (or
bracket) that contains a single eigen-energy. Then we let the window shrink monotonically
to the solution. Looking for a proper energy bracket is the first important step. To
determine the energy bracket, we need to check the number of nodes in the wave function
and the corresponding ∆E. A node is a point along the wave function where the function
value goes through zero. On a discrete grid, a node happens when ui ∗ ui+1 < 0. In
Python, counting the number of nodes can be easily implemented in one line: node

= numpy.sum(u[:-1]*u[1:]<0). The condition u[:-1]*u[1:]<0 returns an array of
booleans, where a true value represents a node. And the numpy.sum counts the number
of True’s. For a given principal quantum number n and angular quantum number l, the
number of nodes satisfies,

node = n− l − 1 (3.31)

For instance, 1s, 2p, 3d orbitals have 0 node; 2s, 3p, 4d orbitals have 1 node; 3s, 4p, 5d
orbitals have 2 nodes; etc.. For an energy that produces the correct number of nodes in
the wave function, if ∆E > 0, perturbation theory suggests the testing energy to move
higher; or if ∆E < 0, it suggests the testing energy to move lower. Therefore, a valid
energy bracket (Em, Ep) should satisfy the following condition:

shoot(Em)→ u→ node==n-l-1 and dE>0

shoot(Ep)→ u→ node==n-l-1 and dE<0

Analytically, we know that for hydrogen-like systems, “all” the eigen-energies are bounded
in between [−Z2

2
, 0), where −Z2

2
is the ground state energy and 0 is the boundary between

bound and scattering states. Even when later we introduce the Kohn-Sham potential,
[−Z2

2
, 0) will still be the global energy bound. This is the starting interval in which we

search for the small energy bracket (we might go a bit beyond in case of some numerical
artifacts). Solving for the eigen-state is implemented in the solve method. A bisection
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3. Self-consistent field solver for atomic systems

scheme is used to search for the energy bracket. After a proper energy bracket is found,
the program iteratively shoots, updates the orbital energy, and shrinks the bracket, with
a catch that if the updated energy goes beyond the bracket then the program rejects the
proposed ∆E and simply shrinks the bracket by half. Thanks to the fast convergence rate
of the first-order perturbation scheme, typically, once a proper energy bracket is found,
it takes less than ten iteration steps to converge |∆E| < 10−8.

At this stage, creating an atomic wave function should be super easy. Once an Orbit

object is created, by default it calls the solve method implicity. The numerical solution
will be generated automatically for the given potential on the grid. A testing run.py is
shown in Algorithm 3.5. We generate hydrogen wave functions 1s, 2s, 2p, 3s, 3p, and 3d,
and the results are plotted in Fig. 3.4.

Algorithm 3.4: The complete Orbit class (orbit.py).
1 import math

2 import numpy as np

3 import scipy.integrate as sp

4
5 class Orbit:

6 def __init__(self , G, n, l, occ=0, Ei=None , isSolved=True):

7 self.G = G # Grid

8 self.n = n # Principal quantum number

9 self.l = l # Angular momentum quantum number

10 self.occ = occ # Number of occupied electrons

11 self.R = np.zeros(G.N) # Radial wave function

12 self.u = np.zeros(G.N) # u = r*R

13 self.E = None # Orbital energy

14 self.M = None # Matching point index

15 self.node = None # Number of nodes

16 self.dE = None # Proposed dE from perturbation

17 if isSolved: self.solve(Ei) # Return the solved orbital

18
19 # Shoot a wave function with given E

20 def shoot(self , E):

21 # Collect attributes (overwrite u to re-use the memory space)

22 (N, dx , r, V, l, u) = (

23 self.G.N, self.G.dx , self.G.r, self.G.V, self.l, self.u

24 )

25
26 # Matching point

27 M = np.where(E<V)[0][0] if E<V[-2] else N//2

28
29 # During the calulation , u is the rescaled u/sqrt(r)

30 # Forward initial condition [0][1]-->

31 u[:2] = r[:2]**(l+0.5)

32 # Backward initial condition <--[end -1][ end]

33 end = N-1

34 if E<V[-2]:

35 # Exponential decay , avoid numerical underflow

36 tail = np.exp(-math.sqrt(abs(2*E))*r)/np.sqrt(r)

37 end = np.where(tail >1e -16)[0][ -1] # After [end], tail too small

38 u[end -1:] = tail[end -1:]

39 else:

40 # Energy too high , use hard boundary condition

41 u[-2:] = [1e-8, 0.0]

42
43 # Numerov method

44 kk = 2*(r**2*(E-V) - 0.5*(l+0.5)**2)

45 A = 2 - dx*dx*5/6*kk

46 B = 1 + dx*dx/12*kk
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3.7. The eigen-state solver

47 # Forward integration [0][1]-->[M]

48 for i in range(2, M+1):

49 u[i] = (A[i-1]*u[i-1] - B[i-2]*u[i-2]) / B[i]

50 FM = u[M]

51 # Backward integration [M]<--[end -1][ end]

52 for i in range(end -2, M-1, -1):

53 u[i] = (A[i+1]*u[i+1] - B[i+2]*u[i+2]) / B[i]

54 BM = u[M]

55 # Connect forward and backward parts

56 u[M:] *= FM/BM

57
58 # Normalization

59 u /= math.sqrt(sp.simps(r**2*u**2, dx=dx))

60
61 # Count the number of nodes

62 node = np.sum(u[:-1]*u[1:] <0)

63
64 # Propose dE from perturbation (0.834 is an empirical speed up factor)

65 dE = ((6/5/ dx - kk[M] /2 *dx)*u[M]

66 -(3/5/dx + kk[M+1]/20* dx)*u[M+1]

67 -(3/5/dx + kk[M -1]/20* dx)*u[M-1])*u[M]*0.834

68
69 # Collect results and rescale u back to u = r*R

70 (self.R, self.u, self.E, self.node , self.M, self.dE) = (

71 u/np.sqrt(r), u*np.sqrt(r), E, node , M, dE

72 )

73
74 # Shoot repeatedly from Ei until dE converges

75 def shootrepeat(self , Ei, itMax =10):

76 self.shoot(Ei)

77 for it in range(itMax ):

78 # Update E by perturbation theory

79 E = self.E + self.dE

80 # Shoot and determine the dE

81 self.shoot(E); dE = self.dE

82 if abs(dE)<1e-8:

83 return True # Converged

84 return False

85
86 # Solve the eigen -state

87 def solve(self , Ei=None):

88 # Collect attributes

89 (Z, n, l) = (self.G.Z, self.n, self.l)

90
91 # Try Ei if available

92 if Ei is not None:

93 with np.errstate(all=’ignore ’):

94 res = self.shootrepeat(Ei)

95 if res and self.node==n-l-1: # Lucky Ei, problem solved

96 return True

97
98 # Otherwise , find an energy bracket and solve the problem

99 # Initial bracket

100 (Em , Ep) = ( -0.55*Z**2, 0.05*Z**2)

101
102 # Error message

103 errmsg = "Orbit: n=%d l=%d not found in (%.2f, %.2f)\n" % (n, l, Em, Ep)

104
105 # Check lower and upper bound

106 self.shoot(Em); (ndm , dEm) = (self.node , self.dE)

107 self.shoot(Ep); (ndp , dEp) = (self.node , self.dE)

108 if ndm >n-l-1 or ndp <n-l-1 or (ndm==n-l-1 and dEm <0) or (ndp==n-l-1 and dEp >0):

109 print(errmsg ); return False

110
111 itMax = 100

112 mPass = pPass = False

113 # Find lower bracket (bisection)

114 (em , ep) = (Em, Ep)
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3. Self-consistent field solver for atomic systems

115 for it in range(itMax ):

116 E = 0.5*(em+ep)

117 self.shoot(E); (nd, dE) = (self.node , self.dE)

118 if nd==n-l-1 and dE >0:

119 (Em , mPass) = (E, True); break

120 else:

121 (em , ep) = (E, ep) if nd<n-l-1 else (em , E)

122 # Find upper bracket (bisection)

123 (em , ep) = (Em, Ep)

124 for it in range(itMax ):

125 E = 0.5*(em+ep)

126 self.shoot(E); (nd, dE) = (self.node , self.dE)

127 if nd==n-l-1 and dE <0:

128 (Ep , pPass) = (E, True); break

129 else:

130 (em , ep) = (em, E) if nd>n-l-1 else (E, ep)

131
132 if mPass and pPass: # Bracket found , start root finding

133 # Initial shoot

134 self.shoot (0.5*( Em+Ep))

135 # Shoot repeatedly within (Em, Ep) until dE converges

136 for it in range(itMax ):

137 # Update E by perturbation theory

138 E = self.E + self.dE

139 # Prevent E going beyond bracket

140 if E<=Em or E>=Ep:

141 E = 0.5*(Em+Ep)

142 # Shoot and determine the dE

143 self.shoot(E); dE = self.dE

144 # Check dE and shrink energy bracket

145 if abs(dE)<1e-8:

146 return True # Converged

147 else:

148 (Em , Ep) = (E, Ep) if dE >0 else (Em, E)

149
150 print(errmsg ); return False

Algorithm 3.5: A test run.
1 from grid import Grid

2 from orbit import Orbit

3 import matplotlib.pyplot as plt

4
5 # Set up grid

6 G = Grid(1, 1e-6, 50, 0.005)

7
8 # Set up orbit

9 orb1s = Orbit(G, 1, 0)

10 orb2s = Orbit(G, 2, 0)

11 orb2p = Orbit(G, 2, 1)

12 orb3s = Orbit(G, 3, 0)

13 orb3p = Orbit(G, 3, 1)

14 orb3d = Orbit(G, 3, 2)

15
16 # Plot

17 plt.plot(G.r, orb1s.u, color=’#0000ff’, linestyle=’-’, label=’$E_{1s}=%.6 f$’%orb1s.E)

18 plt.plot(G.r, orb2s.u, color=’#0000ff’, linestyle=’--’, label=’$E_{2s}=%.6f$’%orb2s.E)

19 plt.plot(G.r, orb2p.u, color=’#ff9900 ’, linestyle=’--’, label=’$E_{2p}=%.6f$’%orb2p.E)

20 plt.plot(G.r, orb3s.u, color=’#0000ff’, linestyle=’:’, label=’$E_{3s}=%.6 f$’%orb3s.E)

21 plt.plot(G.r, orb3p.u, color=’#ff9900 ’, linestyle=’:’, label=’$E_{3p}=%.6 f$’%orb3p.E)

22 plt.plot(G.r, orb3d.u, color=’#ff0000 ’, linestyle=’:’, label=’$E_{3d}=%.6 f$’%orb3d.E)

23 plt.legend(loc=’best’)

24 plt.show()
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Figure 3.4.: Numerical eigen-functions and eigen-energies of hydrogen 1s, 2s, 2p, 3s, 3p,
and 3d orbitals.

3.8. Many-electron atomic system and the Kohn-Sham
equation

From the previous few sections, we have developed a program to solve hydrogen-like
systems, where only one electron is present. In the framework of density functional theory
(DFT), we are going to generalize our program to solve many-electron atomic systems.

The Ne-electron Schrödinger equation (in a.u.) reads,{
Ne∑
i=1

[
−1

2
∇2
i + Vext(ri)

]
+

Ne∑
i<j

1

|ri − rj|

}
Ψ = EΨ (3.32)

The philosophy of DFT is that any property of a many-body system can be viewed as a
functional of the ground state electron density ρ(r). The existence for such functionals
is proved in the original works by Hohenberg and Kohn [11]. There was, however, no
guidance for constructing or approximating the functionals, until the works extended by
Kohn and Sham [12]. The spirit of the Kohn-Sham approach is to replace the original
many-body problem by an auxiliary problem which is a set of Ne one-electron Schrödinger-
like equations, known as the Kohn-Sham equations [12]:[

−1

2
∇2 + VKS(r)

]
ϕi = εiϕi for i = 1, 2, · · · , Ne (3.33)

where VKS(r) is a one-electron effective mean-field potential, called the Kohn-Sham po-
tential. It consists of an external potential Vext(r), an Hartree potential VHartree(r), and
an exchange-correlation potential Vxc(r):

VKS(r) = Vext(r) + VHartree(r) + Vxc(r) (3.34)
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3. Self-consistent field solver for atomic systems

ϕi and εi are the Kohn-Sham orbitals and energies. The “soul” of DFT, the electron
density, is given by:

ρ(r) =
Ne∑
i=1

|ϕi(r)|2 (3.35)

Consider a carbon atom (6C) with the electronic configuration 1s2, 2s2, 2p2. The 1s and 2s
shells are completely filled, while the 2p shell (which can be filled with up to 6 electrons)
is only partially filled with 2 electrons. It is not given – from the electronic configuration
– which 2 of the 6 orbitals are occupied. Here we introduce the “fractional occupations”
that each electron occupies every orbital in the shell fractionally and evenly. This has the
advantage and simplicity that the spherical symmetry of the electron density is preserved.

Proof:

We want to prove that, for a given shell, if the orbitals are evenly occupied, the
corresponding electron density is spherically symmetric: ρ(r)→ ρ(r).

Use the “addition theorem” of spherical harmonics: (r̂1 and r̂2 are unit vectors, Pl
are Legendre polynomials)

Pl(r̂1 · r̂2) =
4π

2l + 1

l∑
m=−l

Ylm(θ1, φ1)Ylm(θ2, φ2) (3.36)

If r̂1 = r̂2 = r̂, we have,

Pl(1) = 1 =
4π

2l + 1

l∑
m=−l

|Ylm(θ, φ)|2 (3.37)

The electron density contributed from each electron reads,

ρ(r) = |Rnl(r)|2
(

1

2l + 1

l∑
m=−l

|Ylm(θ, φ)|2
)

︸ ︷︷ ︸
angular dependence averaged out

=
1

4π
|Rnl(r)|2 Q.E.D. (3.38)

By introducing the “fractional occupations”, the electron density becomes spherically
symmetric:

ρ(r) =
1

4π

Ne∑
i=1

|Ri(r)|2 (3.39)

For the atomic systems, the external potential Vext(r) = −Z/r is, by itself, spherically
symmetric. The Hartree and the exchange-correlation potentials depend on the distribu-
tion of the electron density, which is now spherically symmetric. As a result, we have a
spherically symmetric Kohn-Sham potential VKS(r) = Vext(r) + VHartree(r) + Vxc(r). This
spherical-distribution approximation brings the Kohn-Sham equation (3.33) to a form
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that is similar to the hydrogen-like system (3.1). Thus, if the Hartree and the exchange-
correlation potentials are given, we can easily extend our hydrogen-like atomic solver to
solve general many-electron atomic systems.

3.9. Hartree and exchange-correlation potentials

The Hartree potential is perhaps the most significant component in describing the electron-
electron interactions, as it represents the classical Coulomb repulsion by picturing the
electron density as a continuous charge distribution.

For a given spherically symmetric electron density ρ(r), the total charge (in units of −e)
enclosed in a sphere with radius r can be simply integrated as

Q(r) =

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ r

0

dr′ r′2ρ(r′) = 4π

∫ r

0

dr′ r′2ρ(r′) (3.40)

Setting the zero potential reference point at infinity, the electric potential generated by
the charge is [17]: (in atomic units)

VHartree(r) =

∫ ∞
r

dr′
Q(r′)

r′2
(3.41)

Numerically, the enclosed charge Q reaches the number of electrons Ne at rmax, since this
is how the wave functions are normalized. On a finite grid, the Hartree potential becomes:

VHartree(r) =

∫ rmax

r

dr′
Q(r′)

r′2
+

∫ ∞
rmax

dr′
Ne

r′2
=

∫ rmax

r

dr′
Q(r′)

r′2
+

Ne

rmax

(3.42)

Hartree potential and energy:

A more direct formula connecting the charge density and the electric potential is [17]:

VHartree(r) =

∫
dr′

ρ(r′)

|r− r′| (3.43)

The corresponding energy reads [17]:

EHartree =
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r− r′| (3.44)

Those formalisms are more useful when ρ(r) has an arbitrary distribution. However,
computing (3.43) and (3.44) can be formidable even for simple charge distributions.
In our problem setting, the ρ is spherically symmetric. That is the ideal symmetry
for applying Gauss’s law [17] and obtain the electric potential (3.41) with little effort.
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The Hartree potential describes the classical electron-electron interaction in a mean-field
picture. The remaining quantum mechanical many-body effects on the density are de-
scribed via the exchange-correlation potential, given as a functional derivative:

Vxc(r) =
δExc[ρ]

δρ(r)
(3.45)

where Exc is the exchange-correlation energy, which is a universal but unknown functional
of the density ρ. Frequently used approximations for the density functional Exc[ρ] are the
local density approximation (LDA), the local spin density approximation (LSDA), and the
generalized gradient approximations (GGA). Reference [18] gives an excellent summary
and discussion on the various approximations.

In the relatively simple atomic systems, our choice is to use the LDA for the exchange-
correlation potential approximation. In LDA, the functionals are assumed to be dependent
solely upon the value of ρ at each point in space (but not, for example, derivatives of ρ).
In general, in LDA, the exchange-correlation energy is written as

ELDA
xc [ρ] =

∫
dr ρ(r)εxc(ρ(r)) (3.46)

where εxc is the exchange-correlation energy density derived from the homogeneous elec-
tron gas (HEG) model. For an HEG with electron density ρ (a constant), the exchange-
correlation energy density εxc is determined by ρ. In this regard, εxc is a function of ρ.
In realistic systems, ρ(r) is no longer a constant. However, we assume that ρ(r) is slow
varying, the corresponding exchange-correlation energy density can be taken from the
HEG model with the corresponding electron density: εxc(ρ(r)).

The exchange-correlation energy density is decomposed into an exchange term and a
correlation term linearly:

εxc = εx + εc (3.47)

The exchange term εx is given by the Kohn-Sham-Gaspár approximation [19]:

εx = −
(

3

4π

)
1

αrs
(3.48)

where,

rs =

(
3

4πρ(r)

) 1
3

and α =

(
4

9π

) 1
3

The correlation term εc, on the other hand, has a number of different approximations with
different parameterizations. A detailed discussion can be found in Reference [19]. Here
we provide the Ceperley-Alder approximation with Vosko-Wilk-Nusair parameterization
(CA-VWN) which is the LDA recommended by Reference [19]:

εc = A
[
ln rs

X(rs)
+ 2b

Q
tan−1 Q

2
√
rs+b
− bx0

X(x20)

(
ln

(
√
rs−x0)2

X(rs)
+ 2(b+2x0)

Q
tan−1 Q

2
√
rs+b

)]
(3.49)
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with,

X(rs) = rs + b
√
rs + c and Q =

√
4c− b2

The other parameters are given as:

A 0.0310907
b 3.72744
c 12.9352
x0 −0.10498
b1 9.81379
b2 2.82224
b3 0.736412

Those are the “paramagnetic” parameters3 tabulated in Reference [19], where the up-
spin’s and down-spin’s are treated equally (preserving the spin symmetry), in contrast to
the local spin density approximation (LSDA).

Having the expression of εxc as the sum of (3.48) and (3.49), one can obtain the exchange-
correlation potential via the functional derivative (3.45):

Vxc(r) =
δ

δρ(r)

[
ρ(r)εxc(ρ(r))

]
(3.50)

which yields,

Vxc(r) =
4

3
εx + εc −

A

3

1 + b1r
1/2
s

1 + b1r
1/2
s + b2rs + b3r

3/2
s

(3.51)

Eqn. (3.51) is the final expression for the rather complicated exchange-correlation po-
tential in LDA with the Ceperley-Alder approximation and the Vosko-Wilk-Nusair pa-
rameterization (CA-VWN). As a remark, the definition of rs (known as the Wigner-Seitz
radius) contains a division by the electron density ρ, which involves a division-by-zero risk
when the electron density is zero. Numerically, when ρ = 0, we do not need to perform a
calculation since we know that Vxc = 0.

3.10. Total energy of the many-body system

The formalism of the Kohn-Sham equation (3.33) is built on minimizing the total energy
– the key physical quantity – of the many-body system. The total energy is given as a
sum of 4 energy terms: the kinetic energy Ekin, the external potential energy Eext, the
Hartree energy EHartree, and the exchange-correlation energy Exc:

Etot = Ekin + Eext + EHartree + Exc (3.52)

3The parameter A is given in units of Hartree. It differs from the number in Reference [19] by a factor
of 2, which is given in units of Rydberg.
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where,

Ekin =
Ne∑
i=1

〈i| −1

2
∇2 |i〉 (3.53)

Eext =

∫
dr ρ(r)Vext(r) (3.54)

EHartree =
1

2

∫
dr ρ(r)VHartree(r) (3.55)

Exc =

∫
dr ρ(r)εxc(r) (3.56)

Things might be more subtle than they appear to be. There are a few issues that I would
like to discuss:

1. The sum of the individual Kohn-Sham orbital energies does not yield the total
energy of the system:

Etot 6=
Ne∑
i=1

εi

The Kohn-Sham orbital energies are solutions to the auxiliary non-interacting prob-
lems. They do not add up to the total energy of the many-electron system.

2. The kinetic energy Ekin, as given in (3.53), is the sum of the non-interacting particles’
kinetic energies. It is not the kinetic energy of the many-body system. In the Kohn-
Sham approach, this discrepancy is absorbed into the exchange-correlation term.

3. Eext is the external potential energy of the many-body system. Eext can be viewed
as a linear functional of ρ, as shown in (3.54), because the external potential Vext is
independent of ρ (as the name implies).

4. EHartree is the Hartree energy of the many-body system. EHartree can be viewed as a
quadratic functional of ρ, as explicitly written in (3.44). The 1

2
prefactor accounts for

the electron-pair double counting, it can also be seen from the functional derivative
perspective VHartree = δEHartree/δρ connecting (3.43) and (3.44).

5. Exc is the exchange-correlation energy of the many-body system. In the original
definition (3.46), the integral over the electron density and the energy density pro-
duces the energy. We do not write (3.56) in terms of Vxc, because the functional
derivative that relates Vxc and εxc does not lead to a simple polynomial relation.

One can avoid taking derivatives (which involves unnecessary numerical errors) in the
kinetic term (3.53), by considering the sum of the Kohn-Sham orbital energies:

Ne∑
i=1

εi =
Ne∑
i=1

〈i| −1

2
∇2 + Vext + VHartree + Vxc |i〉

= Ekin + Eext + 2EHartree +

∫
dr ρ(r)Vxc(r) (3.57)
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3.11. The self-consistent field solver

from which we can compute Ekin in a different angle:

Ekin =
Ne∑
i=1

εi − Eext − 2EHartree −
∫
dr ρ(r)Vxc(r) (3.58)

As a result, comparing with (3.52), the total energy can be better computed numerically
as:

Etot =
Ne∑
i=1

εi − EHartree −
∫
dr ρ(r)Vxc(r) + Exc (3.59)

3.11. The self-consistent field solver

We are now in a position to solve the complete problem self-consistently. The self-
consistent loop is shown in Fig. 3.5. The loop starts from an initial potential, then
continues solving the Kohn-Sham equation and updating the potential until the solution
converges.

initial
VKS

compute
{ϕi}

compute
VKS

update
VKS

converged? stop

no

yes

Figure 3.5.: Flow chart of self-consistent field iteration. The loop starts from an initial
potential, then continues solving the Kohn-Sham equation and updating the
potential until the solution converges.

1. Initially, we set VHartree = 0 and Vxc = 0.

VKS ← Vext

This assumes that the electrons are as if non-interacting, which produces hydrogen-
like orbitals as our very first result.

2. From the produced electron density, we compute VHartree and Vxc according to (3.42)
and (3.51), and update VKS by a linear-mixing:

VKS ← (1− α)VKS + α(Vext + VHartree + Vxc)

where α is a number between 0 and 1. If α = 1, it is a full update, which normally
makes the problem non-converging. Practically, we choose α = 0.5. However, that
still does not guarantee a convergence. During the iterations, if the solution starts
to diverge, we fine-tune α towards 0.3 to ensure the convergence.
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3. Self-consistent field solver for atomic systems

3. From the updated potential VKS, we solve again the Kohn-Sham equation and obtain
new orbitals and the corresponding electron density. The loop continues until the
solutions are converged.

4. Finally, we output the physical quantities, including the Kohn-Sham orbitals, the
electron density, the potentials, and the total energy of the system.

The complete self-consistent field solver is given in Algorithm 3.6.

Algorithm 3.6: The self-consistent field solver SCF for atomic systems (scf.py).
1 import math

2 import numpy as np

3 import scipy.integrate as sp

4 from grid import Grid

5 from orbit import Orbit

6
7 # Cumulatively integrate y using the Simpson ’s rule

8 def cumsimps(y, dx):

9 I = np.zeros(len(y))

10 I[1] = (y[0]+y[1])/2

11 for i in range(2,len(y)):

12 I[i] = I[i-2] + (y[i -2]+4*y[i-1]+y[i])/3

13 return dx*I

14
15 class SCF:

16 def __init__(self , Z, rmin , rmax , dx , cfgList ):

17 G = Grid(Z, rmin , rmax , dx); (r, N) = (G.r, G.N)

18 self.G = G # Grid

19 self.cfgList = cfgList # List of configurations

20 self.orbList = [] # List of orbitals

21 self.EiList = [-Z**2/(2* cfg [0]**2) for cfg in cfgList] # List of Ei

22 self.Ne = np.sum(cfgList , axis =0)[2] # Number of electrons

23 self.Vext = -Z/r # Nuclear potential

24 self.VH = np.zeros(N) # Hartree potential

25 self.Vxc = np.zeros(N) # Exchange -correlation potential

26 self.rho = np.zeros(N) # Electron density

27 self.Etot = 0 # Total energy

28 self.Ekin = 0 # Kinetic energy

29 self.Eext = 0 # Nuclear potential energy

30 self.EH = 0 # Hartree energy

31 self.Exc = 0 # Exchange -correlation energy

32 self.Niter = 0 # Current iteration number

33 self.mix = 0.5 # Linear mixing coefficient

34 self.cnvg = None # Current convergence

35
36 # One SCF step

37 def step(self):

38 # Collect attributes

39 (G, N, dx , r, V, cfgList , EiList , Ne , Vext , mix) = (

40 self.G, self.G.N, self.G.dx , self.G.r, self.G.V,

41 self.cfgList , self.EiList , self.Ne, self.Vext , self.mix

42 )

43
44 # Generate occupied orbitals

45 orbList = [Orbit(G, *cfg , Ei=Ei) for (cfg , Ei) in zip(cfgList , EiList )]

46
47 # Update Ei

48 EiList = [orb.E for orb in orbList]

49
50 # Compute rho from orbList

51 rho = sum(orb.occ*orb.R**2 for orb in orbList )/(4* math.pi)

52
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3.11. The self-consistent field solver

53 # Charge

54 Q = 4*math.pi*cumsimps(rho*r**3, dx)

55
56 # Hartree potential

57 VH = cumsimps ((Q/r)[::-1], dx)[:: -1] + Ne/r[-1]

58
59 # Exchange -correlation potential (Ceperley -Alder Vosko -Wilk -Nusair)

60 alpha = (4/(9* math.pi ))**(1/3)

61 nz = rho >1e-16 # Avoid division -by-zero

62 rs = (3/(4* math.pi*rho[nz ]))**(1/3)

63 (A, b, c, x0, b1 , b2 , b3) = (

64 0.0310907 , 3.72744 , 12.9352 , -0.10498, 9.81379 , 2.82224 , 0.736412

65 )

66 Q0 = math.sqrt (4*c-b**2); rsrt = np.sqrt(rs); Xr = rs+b*rsrt+c

67 ex = -0.75/( math.pi*alpha*rs)

68 ec = A*(

69 np.log(rs/Xr) + 2*b/Q0*np.arctan(Q0/(2* rsrt+b)) - b*x0/(x0**2+b*x0+c)*(

70 np.log((rsrt -x0)**2/Xr) + 2*(b+2*x0)/Q0*np.arctan(Q0/(2* rsrt+b))

71 )

72 )

73 exc = np.zeros(N) # Exchange -correlation energy density

74 exc[nz] = ex + ec

75 Vxc = np.zeros(N) # Exchange -correlation potential

76 Vxc[nz] = 4/3*ex + ec - A/3*(1+ b1*rsrt )/(1+b1*rsrt+b2*rs+b3*rsrt **3)

77
78 # Total energy

79 Eext = 4*math.pi*sp.simps(r**3* rho*Vext , dx=dx)

80 EH = 2*math.pi*sp.simps(r**3* rho*VH, dx=dx)

81 Evxc = 4*math.pi*sp.simps(r**3* rho*Vxc , dx=dx)

82 Exc = 4*math.pi*sp.simps(r**3* rho*exc , dx=dx)

83 Eeig = sum(orb.occ*orb.E for orb in orbList)

84 Ekin = Eeig - Eext - 2*EH - Evxc

85 Etot = Eeig - EH - Evxc + Exc

86
87 # Convergency

88 cnvg = abs(Etot -self.Etot)

89 if self.cnvg is not None and cnvg >=self.cnvg and mix >0.3:

90 mix -= 0.1 # Reduce mixing if cnvg increases

91
92 # Update V by mixing

93 V = (1-mix)*V + mix*(Vext+VH+Vxc)

94
95 # Collect results

96 (self.G.V, self.orbList , self.EiList , self.VH , self.Vxc , self.rho ,

97 self.Etot , self.Ekin , self.Eext , self.EH , self.Exc , self.Niter ,

98 self.mix , self.cnvg) = (V, orbList , EiList , VH , Vxc , rho , Etot ,

99 Ekin , Eext , EH, Exc , self.Niter+1, mix , cnvg)

100
101 # Many SCF steps until convergence

102 def full(self , eps=1e-8, itMax =100):

103 for it in range(itMax ):

104 self.step()

105 if self.cnvg <=eps:

106 return True

107 return False

Simpson’s cumulative integral:

We made a helper function cumsimps in a similar manner to the cumtrapz from the
scipy package, which helps to compute the integrals (3.40) and (3.42) cumulatively. It
is worth to mention that scipy provides trapz, simps, cumtrapz, but no cumsimps.
We could have simply used the trapezoidal rule to compute the Hartree potential,
which would be one order less accurate than the Simpson’s. However, the Hartree
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3. Self-consistent field solver for atomic systems

potential is such a significant term, it should be calculated accurately (there will be a
significant difference on the resulting energies, if one replaces cumsimps by cumtrapz).

In Algorithm 3.7, we perform an SCF calculation for a lead atom (82Pb). Pb has atomic
number Z = 82, and its electronic configuration is given by (in the Aufbau order):

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2, 4d10, 5p6︸ ︷︷ ︸
[Xe]

, 6s2, 4f 14, 5d10, 6p2

We run the SCF iterations until the total energy of the system converges to less than
a tolerance (10−8 Hartree). We plot the initial and final electron density (scaled by r2)
in Fig. 3.6. One can see that, initially, the electron density is concentrated around the
nucleus since the electron-electron interactions are ignored. After the SCF calculation,
the electron density expands due to the electron-electron interactions and converges to
the yellow curve shown in the figure.

Algorithm 3.7: A test run.
1 from scf import SCF

2 import matplotlib.pyplot as plt

3
4 # Lead atom (Pb)

5 Z = 82

6 cfgList = [

7 [1, 0, 2],

8 [2, 0, 2],

9 [2, 1, 6],

10 [3, 0, 2],

11 [3, 1, 6],

12 [4, 0, 2],

13 [3, 2, 10],

14 [4, 1, 6],

15 [5, 0, 2],

16 [4, 2, 10],

17 [5, 1, 6],

18 [6, 0, 2],

19 [4, 3, 14],

20 [5, 2, 10],

21 [6, 1, 2]

22 ]

23
24 # Set up SCF solver

25 scf = SCF(Z, 1e-6/Z, 50, 0.005 , cfgList ); r = scf.G.r

26
27 # SCF calculation

28 scf.step (); rho0 = scf.rho # Initial electron density

29 scf.full (); rho1 = scf.rho # Final electron density

30
31 # Plot

32 plt.plot(r, rho0*r**2, label=’Initial density ’)

33 plt.plot(r, rho1*r**2, label=’SCF density ’)

34 plt.legend(loc=’best’)

35 plt.show()

The National Institute of Standards and Technology (NIST) provides excellent references
for atomic electronic structure calculations [13]. We compare our results for the lead
atom (82Pb) with the LDA results from NIST [13]. The total energy, together with the
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Figure 3.6.: Self-consistent field calculation of a lead atom (82Pb). Blue curve: Initial
electron density before SCF iteration; Yellow curve: Final electron density
after SCF converges.

kinetic, external potential, Hartree, and exchange-correlation energies, plus the Kohn-
Sham orbital energies are tabulated in Table 3.3. We see that the numerical results
perfectly agree with each other. With this nicely tabulated results, we conclude this
chapter. We have developed a complete, hopefully elegant, DFT code for atomic systems.

A final remark:

Normally, people tend to avoid explicitly listing the source code in the article, since
it is often “dangerous”. One has to be very careful not to make a mistake, and to
make the code optimized but at the same time easy to read. I am not claiming that
I have provided “the best solution”. But I am convinced enough to print out the
Python source code, which I believe is carefully organized and conveys precisely the
information on the DFT calculation, including the logarithmic grid set up, Numerov’s
integration, eigen-value problem solving, Kohn-Sham potential calculation, and self-
consistent field iterations. From this explicitly listed Python source code, one can
easily run and check the calculations for any different atoms and ions with the chosen
electronic configurations.
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3. Self-consistent field solver for atomic systems

Table 3.3.: Comparison of SCF calculations between my results and NIST results for a
lead atom (82Pb). Energies are given in units of Hartree.

Energy My results NIST results

Etot −19518.993145 −19518.993145
Ekin 19512.662680 19512.662684
Eext −46459.627739 −46459.627742
EHartree 7781.994460 7781.994459
Exc −354.022546 −354.022546
1s2 −2901.078061 −2901.078061
2s2 −488.843335 −488.843335
2p6 −470.877785 −470.877785
3s2 −116.526852 −116.526852
3p6 −107.950391 −107.950391
3d10 −91.889924 −91.889924
4s2 −25.753330 −25.753330
4p6 −21.990564 −21.990564
4d10 −15.030027 −15.030026
4f 14 −5.592532 −5.592532
5s2 −4.206798 −4.206797
5p6 −2.941657 −2.941657
5d10 −0.902393 −0.902393
6s2 −0.357187 −0.357187
6p2 −0.141831 −0.141831
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4. LS-coupling and jj-coupling
schemes for atomic open-shell
problems

4.1. Atomic open-shell problems

The “spherical charge-distribution approximation” (3.39) that we made in the DFT cal-
culation last chapter was exact for closed shells. Eqn. (3.39) is an approximation only for
shells that are not completely filled – we call them open-shells.

Open-shell problems are many-body problems.1 In this chapter, we are going to solve
the atomic open-shell systems and discuss the many-body effects of the two important
interactions:

1. The Coulomb Hamiltonian (in atomic units)

1st quantization: HU =
∑
i<j

1

|ri − rj|
(4.1)

2nd quantization: HU =
∑
α<β
γ<δ

Üαβγδc
†
αc
†
βcγcδ; Üαβγδ = 〈αβ| 1

|r1 − r2|
|γδ〉 (4.2)

(the form of the two-electron integral was discussed in (1.19))

2. The spin-orbit Hamiltonian (in atomic units)

1st quantization: HSO =
Ne∑
i=1

ξ(ri)`i · si; ξ(r) =
1

2c2r

dV

dr
(4.3)

2nd quantization: HSO =
∑
αβ

Xαβc
†
αcβ; Xαβ = 〈α| ξ(r)` · s |β〉 (4.4)

where, the speed of light is c ≈ 137.036 a0/t0 in atomic units; and V (r) is the
mean-field potential in the one-electron picture.

1Of course, closed shell problems are also “many-body” since there are many electrons. But closed shells
(1-dim Hilbert space) can be reduced effectively to one-electron problems. They are not the “many-body
problem” in our sense.
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4. LS-coupling and jj-coupling schemes for atomic open-shell problems

Atomic open-shells are precious systems in quantum many-body problems that can have
analytic solutions. In this chapter, we discuss how to diagonalize the many-electron
Hamiltonians HU and HSO in the open-shell systems analytically, without setting up the
matrix representations. If you think about it, this is very cool: we are going to diagonalize
matrices without using the matrices. This is only possible because the Hamiltonians have
special symmetries: they commute with certain angular momentum operators, which
allows us to use the ladder operator technique to construct the many-body eigen-
states under a proper basis. The complexity of diagonalizing a many-body Hamiltonian
using ladder operator techniques only scales linearly with the problem size. Further,
from the analytic solutions, we understand more about the systems, such as why certain
eigen-states are degenerate. However, I need to point out, there are a few cases that
ladder operators get stuck: if more than one group of eigen-states happen to have the
same angular momenta, then ladder operators cannot distinguish them. For those cases,
we set up the matrix representations in small subspaces and diagonalize small matrices
numerically.

The spirit of this chapter is the first-order degenerate perturbation theory. Because
of the spherical approximation – which makes the Hamiltonian commute with the angular
momentum – the (4l+ 2) orbitals (including spins) in a shell are energetically degenerate.
We set up the many-electron basis in the open-shell, and we solve HU and HSO in this
degenerate basis, which is doing exactly the first-order degenerate perturbation theory.
One must realize that the Coulomb Hamiltonian entered already in the DFT calculations:
solving HU again in the open-shell introduces a “double counting” problem. Indeed, the
multiplet energies that we are going to obtain are correct up to a constant energy shift.
The useful results are the multiplet splittings. Further, as we are going to explain, the
LS-coupling and jj-coupling schemes introduce yet another first-order degenerate per-
turbation theory in a different level, where the multiplet terms further split by spin-orbit
perturbation and the spin-orbit terms further split by Coulomb perturbation, respectively.

4.2. LS-basis and jj-basis

Consider a group of three electrons. Each has its orbital angular momentum `i and spin
angular momentum si.

• • •
`1 s1 `2 s2 `3 s3

Question: What is the total angular momentum of the system?

The answer is simple. But there are two interpretations:

Interpretation 1:

J = (`1 + `2 + `3) + (s1 + s2 + s3) =
3∑
i=1

`i +
3∑
i=1

si = L + S (4.5)
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4.2. LS-basis and jj-basis

Interpretation 2:

J = (`1 + s1) + (`2 + s2) + (`3 + s3) =
3∑
i=1

(`i + si) =
3∑
i=1

ji (4.6)

The two interpretations are equivalent: they are two different perspectives of the same
problem.

• In Interpretation 1, the individual orbital angular momenta `i combine together to
form a total orbital angular momentum L. The same happens with the individual
spin angular momenta si forming a total spin angular momentum S. Then L and S
sum up together to form the total angular momentum J. This interpretation leads
to the LS-basis.

• In Interpretation 2, we collect each electron’s total angular momentum ji = `i + si
and then sum them up to get the total angular momentum J of the system. This
interpretation leads to the jj-basis.

1 0 −1
↑
↓

(a) LS-basis

3
2

1
2
−1

2
−3

2

j = 3
2

j = 1
2

(b) jj-basis

Figure 4.1.: Two different representations of an atomic p-shell. (a) A p-shell in the LS-
basis, where an orbital is labelled by orbital projection quantum number m
and spin projection quantum number σ; (b) A p-shell in the jj-basis, where
an orbital is labelled by total angular quantum number j and total angular
projection quantum number µ.

Consider a simple atomic p-shell system. For an electron in a p-shell, it has an orbital
angular momentum l = 1 and a spin angular momentum (always) s = 1/2. A p-shell can
be filled with up to 6 electrons. Normally, we distinguish the 6 orbitals by the angular
projection quantum numbers:

m = 1, 0,−1 and σ =
1

2
,−1

2

as shown in Fig. 4.1a. This diagram is in fact in the LS-basis, as we distinguish separately
` and s.

A less familiar representation of a p-shell is shown in Fig. 4.1b. In this representation, we
sum up `i and si to get ji. Because electrons are spin 1/2 particles, unless l = 0 (s-shell),
there will be always two possible values of j, namely,

j = l +
1

2
and j = l − 1

2
(4.7)

For each j, there is a set of projection quantum numbers. For the p-shell, we have{
j =

3

2
, µ =

3

2
,
1

2
,−1

2
,−3

2

}
and

{
j =

1

2
, µ =

1

2
,−1

2

}
(4.8)
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4. LS-coupling and jj-coupling schemes for atomic open-shell problems

Notice that the number of orbitals is invariant under different coupling schemes. The
connection between the LS-basis and the jj-basis is a unitary transformation (see Sec-
tion 4.6).

There might be confusion on some notations. I’d better put them more explicit:

1. In the LS-basis, a single orbital state is labelled by quantum numbers

|n, l, ml, s, ms〉
where ml and ms are the projection quantum numbers of l and s, respectively. Here
we simplify the notations as m ← ml and σ ← ms to avoid writing the subscripts.
Moreover, since s is always 1

2
, it is omitted. Now, we write a single orbital state as

|n, l, m, σ〉
where n and l address the shell; m and σ label the different orbitals in the shell.

2. In the jj-basis, a single orbital state is labelled by quantum numbers

|n, l, s, j, mj〉
where j is produced by adding ` and s; mj is the projection quantum number of j.
Similarly, mj is simplified to µ, and s = 1

2
is omitted. The notation is simplified to

|n, l, j, µ〉
where n and l address the shell; j and µ label the different orbitals in the shell.

Physics is independent of the choice of basis. So why are we concerned about them?
Within a Hilbert space, we have a freedom to choose a basis. But a “good basis” should
make the Hamiltonian almost diagonal, therefore easier to obtain the eigen-states. As
we are going to explain, when constructing the atomic multiplets, an LS-basis makes
the Coulomb Hamiltonian HU almost diagonal, and a jj-basis will make the spin-orbit
Hamiltonian HSO purely diagonal. Here comes the business:

• The task is to diagonalize a many-body Hamiltonian for an atomic open-shell sys-
tem.

H = HU +HSO

• If HU dominates (for light atoms like carbon 6C with open-shell 2p2), we prefer the
“LS-basis” to diagonalize HU exactly and introduce HSO as a perturbation.

• If HSO dominates (rare case but happens for super heavy atoms like flerovium 114Fl
with open-shell 7p2), we prefer the “jj-basis” to diagonalize HSO exactly and intro-
duce HU as a perturbation.

As a remark, in most of the cases, by default, HSO is treated as a perturbation, because
the spin-orbit interaction is a relativistic effect, which is normally a weak term. This
relativistic effect only grows up for heavy elements. On the other hand, the Coulomb
interactions are never that weak. Thus, to have spin-orbit dominated cases, one has to
reach super heavy elements like flerovium 114Fl. We shall confirm this trend systematically
in a later chapter.
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4.3. The Coulomb and spin-orbit matrix elements

4.3. The Coulomb and spin-orbit matrix elements

Given a set of basis functions, we can evaluate the corresponding matrix elements. The
computation of the Coulomb matrix element Üαβγδ is, in general, very difficult. In this
chapter, we have simple atomic systems that all the wave functions are centered at the
origin (the on-site Coulomb interaction). The evaluation of the on-site Üαβγδ is very much
easier but still complicated enough that we need to discuss in detail.

The Coulomb matrix element Üαβγδ can be expressed as, (see (1.21))

Üαβγδ = Uαβγδ − Uαβδγ (4.9)

where,

Uαβγδ =

∫
dx1

∫
dx2 ϕα(x1)ϕβ(x2)

1

|r1 − r2|
ϕγ(x2)ϕδ(x1)

= δσασδδσβσγ

∫
dr1

∫
dr2 ϕα(r1)ϕβ(r2)

1

|r1 − r2|
ϕγ(r2)ϕδ(r1) (4.10)

Eqn. (4.10) factorizes to spin and spatial integrals. While the spin part is trivial, the
spatial component is rather complicated. The difficulty comes from the term 1

|r1−r2| ,
which is 6-dimensional. To integrate over the 6-dimensional function, we use a technique
called the “multipole expansion”, which expands the term 1

|r1−r2| into a product form of

radial and angular parts: [20, 21]

1

|r1 − r2|
=
∞∑
k=0

rk<
rk+1
>

4π

2k + 1

k∑
µ=−k

Ykµ(θ1, φ1)Ykµ(θ2, φ2) (4.11)

where r< = min(r1, r2) and r> = max(r1, r2). As a result, integral (4.10) divides into
radial and angular parts:

Uαβγδ = δσασδδσβσγ

∞∑
k=0

(RαRβ|
rk<
rk+1
>

|RγRδ)︸ ︷︷ ︸
Radial part

4π

2k + 1

k∑
µ=−k

〈Yα|Ykµ |Yδ〉 〈Yβ|Ykµ |Yγ〉︸ ︷︷ ︸
Angular part

(4.12)

The radial part is a Slater integral (or Slater-Condon parameter). This parameter carries
the information on the “strength” of the Coulomb interaction: if the wave functions are
concentrated (strong Coulomb repulsion), the corresponding Slater integral is large. In
Chapter 5, we will discuss the calculation and the periodic trends of this parameter. On
the other hand, the angular part consists of two Gaunt coefficients – a Gaunt coefficient
is an integral over the product of three spherical harmonics. In Chapter 7, we will discuss
the evaluation methods for those special integrals. The multipole expansion (4.11) has
an expansion index k that runs from 0 to infinity, which suggests a long summation until
convergence. Fortunately, the Gaunt coefficients have nice properties and symmetries so
that they vanish under certain combination of the angular momenta. In a simple case,
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4. LS-coupling and jj-coupling schemes for atomic open-shell problems

suppose α, β, γ, and δ are orbitals in the same shell (n, l), the only non-trivial expansion
indices are k = 0, 2, 4, · · · , 2l.
As a remark, the Coulomb matrix element needs to be evaluated in the LS-basis, because
in the LS-basis the space and spin degrees of freedom are separated, thus the explicit
integration over the real space is possible.

On the other hand, the spin-orbit matrix elements can be easily evaluated in both the
LS-basis and the jj-basis. The spin-orbit matrix element Xαβ has the form:

Xαβ = 〈α| ξ(r)` · s |β〉 (4.13)

In the LS-basis, the orbital indices α and β consist of the shell numbers (n, l) and the
angular momenta (l,m, s, σ). Thus, Xαβ divides into a radial part and a spin-orbit angular
part:

Xαβ = 〈Rα| ξ(r) |Rβ〉︸ ︷︷ ︸
Radial part

〈lαmαsασα| ` · s |lβmβsβσβ〉︸ ︷︷ ︸
spin-orbit Angular part

(4.14)

The radial part is a simple one-dimensional integral over the radial coordinate, to which we
assign a short name – the capital greek Ξαβ. In Chapter 5, we will discuss the calculation
and the periodic trends of this parameter. To work out the angular part, we use the
relation:

` · s = lxsx + lysy + lzsz =
1

2
(l+s− + l−s+ + 2lzsz) (4.15)

Therefore, Eqn. (4.14) becomes,

Xαβ =
1

2
Ξαβ 〈lαmαsασα| l+s− + l−s+ + 2lzsz |lβmβsβσβ〉

=
1

2
Ξαβ

[√
(lβ +mβ + 1)(lβ −mβ)(1

2
+ σβ)(1

2
− σβ + 1)δmα,mβ+1δσα,σβ−1

+
√

(lβ +mβ)(lβ −mβ + 1)(1
2

+ σβ + 1)(1
2
− σβ)δmα,mβ−1δσα,σβ+1

+ 2mβσβδmαmβδσασβ

]
(4.16)

which is the spin-orbit matrix element evaluated in the LS-basis.

In the jj-basis, the orbital indices α and β consist of the shell numbers (n, l) and the
angular momenta (l, s, j, µ). Thus,

Xαβ = 〈Rα| ξ(r) |Rβ〉︸ ︷︷ ︸
Radial part

〈lαsαjαµα| ` · s |lβsβjβµβ〉︸ ︷︷ ︸
spin-orbit Angular part

(4.17)

The radial part is the same Ξαβ as evaluated in the LS-basis (4.14). To work out the
angular part, we use the relation:2

` · s =
1

2

(
ĵ2 − l̂2 − ŝ2

)
(4.18)

2Here we add “hats” on the operators to distinguish them from the quantum numbers, because in this
context there exists an ambiguity without the “hats”. However, always carrying the “hats” on operators
is bit cumbersome. Normally, when there is no ambiguity, the “hats” are dropped.
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Now, Eqn. (4.17) becomes,

Xαβ =
1

2
Ξαβ 〈lαsαjαµα| ĵ2 − l̂2 − ŝ2 |lβsβjβµβ〉

=
1

2
Ξαβ

[
jβ(jβ + 1)− lβ(lβ + 1)− 3

4

]
δlαlβδjαjβδµαµβ (4.19)

which is the spin-orbit matrix element evaluated in the jj-basis.

4.4. The LS-coupling scheme

Solving the open-shell problems in the LS-coupling scheme yields the familiar atomic
multiplets [15]. In this section, we summarize the main ideas of the LS-coupling scheme.

The problem is to diagonalize
H = HU +HSO (4.20)

in an atomic shell. In the LS-coupling scheme, we first diagonalize HU exactly, and then
solve HSO as a perturbation.

4.4.1. Diagonalizing HU in the LS-basis

Choosing the LS-basis, one can take the advantage of the symmetry that the Coulomb
Hamiltonian HU commutes with the total angular momenta S and L.

Proof:

We want to prove that

[HU , S] = 0 and [HU , L] = 0 (4.21)

where,

HU =
∑
i<j

1

|ri − rj|
, S =

Ne∑
i=1

si, L =
Ne∑
i=1

`i (4.22)

[HU , S] = 0 is trivial, since HU has no spin dependence. The physical picture is that
flipping spins has no effect on the Coulomb interaction.

[HU , L] = 0 is a bit more difficult. We need

`i = −iri ×∇i (4.23)

Consider the commutator of a Coulomb pair and an angular momentum operator,
(working with differential operators, we need a “test function” f(ri), so that we don’t

65



4. LS-coupling and jj-coupling schemes for atomic open-shell problems

forget the product rule)[
1

|ri − rj|
, `i

]
f(ri) =

1

|ri − rj|
`if(ri)− `i

1

|ri − rj|
f(ri)

=
−iri
|ri − rj|

×∇if(ri) + iri ×∇i
1

|ri − rj|
f(ri)︸ ︷︷ ︸

product rule

=
−iri
|ri − rj|

×∇if(ri)− iri ×
ri − rj
|ri − rj|3

f(ri) +
iri

|ri − rj|
×∇if(ri)

The first and the last terms cancel. In the middle term, there are ri × ri = 0 and
ri × rj = −rj × ri. Dropping the test function, we have,[

1

|ri − rj|
, `i

]
=

iri × rj
|ri − rj|3

= − irj × ri
|ri − rj|3

= −
[

1

|ri − rj|
, `j

]
(4.24)

Thus, a Coulomb pair doesn’t commute with a single angular momentum operator,
but it commutes with a pair of angular momenta:[

1

|ri − rj|
, `i + `j

]
= 0 ⇒

[∑
i<j

1

|ri − rj|
,
Ne∑
i=1

`i

]
= 0 Q.E.D. (4.25)

The physical picture is that the Coulomb interaction is invariant under the rotation of
the entire system: If we pick one electron and rotate it around the origin, the system is
certainly altered; If we rotate a pair of electrons, the Coulomb interaction between the
pair stays the same (that’s why they commute pair-wise); If we rotate all the electrons,
the Coulomb interactions among all the pairs are unchanged.

Given that [HU , S] = 0 and [HU , L] = 0, we have the following relations:

[HU , S
2] = 0 [HU , L

2] = 0 [HU , Sz] = 0 [HU , Lz] = 0 (4.26)

As a result, an eigen-state of HU is simultaneously eigen-state of S2, L2, Sz, Lz. Besides,
the four operators mutually commute. Thus, we can label an eigen-state of HU with the
four quantum numbers: S, L, MS, ML.

A side note, because J = L + S, it follows that [HU , J] = 0, and consequently [HU , J
2] =

[HU , Jz] = 0. An eigen-state of HU can be also labelled by two quantum numbers: J , MJ .
However, it can’t be simultaneously labelled by S, L, J,MS,ML,MJ (that would be cool),
because the operators S2, L2, J2, Sz, Lz, Jz do not mutually commute (e.g. [J2, Lz] 6= 0).

The commutation relations [HU , S] = 0 and [HU , L] = 0 also lead to

[HU , S±] = 0 and [HU , L±] = 0 (4.27)

The logical consequence is:

If: |Ψ〉 is an eigen-state of HU with eigen-energy E,

Then: S± |Ψ〉 and L± |Ψ〉 are also eigen-states of HU with the same eigen-energy E.
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4.4. The LS-coupling scheme

The ladder operators only change the projection quantum numbers MS and ML. Thus,
the eigen-states that differ only in MS and ML are degenerate. The states that have the
same S and L form a group called the multiplet term.3 A multiplet term has the symbol

2S+1L (4.28)

We denote each eigen-state as ∣∣2S+1LMSML

〉
(4.29)

Within a multiplet term,

MS = −S, −S+1, · · · , −1, 0, 1, · · · , S−1, S

ML = −L, −L+1, · · · , −1, 0, 1, · · · , L−1, L

The degeneracy of a multiplet term is (2S + 1)(2L+ 1).

Here we demonstrate solving the p2 system, which is the simplest non-trivial system to
study. We set up the many-electron basis of the p2 system, as shown in Fig. 4.2.

• • • • •
•

•
•

•
•

• • •
•

•
•

•
•

•
•

•
•

•
• • • • • • •

Figure 4.2.: The many-electron basis states of a p2 shell in the LS-coupling scheme. The
orbital quantum numbers are given in Fig. 4.1a.

Each basis state has well defined

MS =
Ne∑
i=1

σi and ML =
Ne∑
i=1

mi (4.30)

In general,

An eigen-state
∣∣2S+1LMSML

〉
is a linear combination

of the basis states that have the same (MS,ML).

For all basis states, we mark their (MS,ML). The corresponding values in Fig. 4.2 are

( 1, 1) ( 1, 0) ( 0, 2) ( 0, 1) ( 0, 0)
( 1,−1) ( 0, 1) ( 0, 0) ( 0,−1) ( 0, 0)
( 0,−1) ( 0,−2) (−1, 1) (−1, 0) (−1,−1)

3It is possible that two multiplet terms happen to have the same S and L.
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4. LS-coupling and jj-coupling schemes for atomic open-shell problems

We can quickly obtain the multiplet terms of a system by a simple “counting”. We count
the number of basis states with the same (MS,ML). For the p2 system, we have:

ML

2 1 0 −1 −2
1 0 1 1 1 0

MS 0 1 2 3 2 1
−1 0 1 1 1 0

Now, we collect groups, in which the group members are connected by the ladder operators
L± and S±:

0 1 1 1 0
1 2 3 2 1
0 1 1 1 0

 =



0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

 (S = 1, L = 1) → 3P

+0 0 0 0 0

1 1 1 1 1

0 0 0 0 0

 (S = 0, L = 2) → 1D

+0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

 (S = 0, L = 0) → 1S

The corresponding eigen-states
∣∣2S+1LMSML

〉
are:

|3P 1 1〉 |3P 1 0〉 |3P 1−1〉
|3P 0 1〉 |3P 0 0〉 |3P 0−1〉
|3P−1 1〉 |3P−1 0〉 |3P−1−1〉

|1D 0 2〉 |1D 0 1〉 |1D 0 0〉 |1D 0−1〉 |1D 0−2〉
|1S 0 0〉

By counting the basis states, we can easily produce the names of the eigen-states. But
we haven’t really solved for them, which means to express the eigen-states in terms of the
basis states. Here enters the ladder operator technique, and we briefly discuss how this
method works:

Within a multiplet group, there are (2S + 1)(2L+ 1) eigen-states. If we know (any) one
of the eigen-states, we can construct the entire group using the ladder operators. Among
the basis states (Fig. 4.2), some are – by themselves – eigen-states. Those are the ones
that have a unique (MS,ML). Referring back to the MS-ML table of the p2 problem, 0 1 1 1 0

1 2 3 2 1

0 1 1 1 0


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4.4. The LS-coupling scheme

All the basis states (marked by boxes) that have a unique (MS,ML) can serve as a starting
eigen-state. For instance,0 1 1 1 0

1 2 3 2 1
0 1 1 1 0

 7→ | • • 〉 7→ c†0↑c
†
1↑ |0〉 (4.31)

This basis state has a unique (MS,ML) = (1, 1). It must be the eigen-state∣∣3P 11

〉
= c†0↑c

†
1↑ |0〉 (4.32)

Now we can apply ladder operators to get the entire 3P group. Recall the “ladder rela-
tions”,

L± |l,m〉 = α±lm |l,m± 1〉 where α±lm =
√

(l ∓m)(l ±m+ 1) (4.33)

For instance,
L−
∣∣3P 11

〉
=
√

2
∣∣3P 10

〉
(4.34)

On the other hand,

L−c
†
0↑c
†
1↑ |0〉 = (`−c

†
0↑)c

†
1↑ |0〉+ c†0↑(`−c

†
1↑) |0〉

=
√

2c†−1↑c
†
1↑ |0〉+

√
2 c†0↑c

†
0↑︸ ︷︷ ︸

Pauli→0

|0〉 (4.35)

Equating (4.34) and (4.35), we see that,∣∣3P 10

〉
= c†−1↑c

†
1↑ |0〉 (4.36)

Oh, but this is not very interesting: it is just another basis state. What happened is that
we used L− to produce |3P 10〉:0 1 1 1 0

0 1 1 1 0
0 1 1 1 0

 L−−→

0 1 1 1 0
0 1 1 1 0
0 1 1 1 0


It is not necessary to use ladder operators to produce this state (because we know already
it is a single basis state), but we can use ladder operators to produce it, and the results
are consistent.

How about to try S−:
S−
∣∣3P 11

〉
=
√

2
∣∣3P 01

〉
(4.37)

On the other hand,

S−c
†
0↑c
†
1↑ |0〉 = (s−c

†
0↑)c

†
1↑ |0〉+ c†0↑(s−c

†
1↑) |0〉

= c†0↓c
†
1↑ |0〉+ c†0↑c

†
1↓ |0〉

= c†0↓c
†
1↑ |0〉 − c†1↓c†0↑ |0〉 (ordering) (4.38)
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4. LS-coupling and jj-coupling schemes for atomic open-shell problems

The last step in (4.38) is to keep the default orbital ordering (phase convention). There-
fore, ∣∣3P 01

〉
=

1√
2

(
c†0↓c

†
1↑ − c†1↓c†0↑

)
|0〉 (4.39)

We used S− to produce |3P 01〉:

0 1 1 1 0
0 1 1 1 0
0 1 1 1 0

 S−−→

0 1 1 1 0

0 1 1 1 0
0 1 1 1 0


We can keep applying S− and L− in the same manner to obtain the entire 9 eigen-states.
They are:

|3P 1 1〉 = c†0↑c
†
1↑ |0〉

|3P 0 1〉 = 1√
2

(
c†0↓c

†
1↑ − c†1↓c†0↑

)
|0〉

|3P−1 1〉 = c†0↓c
†
1↓ |0〉

|3P 1 0〉 = c†−1↑c
†
1↑ |0〉

|3P 0 0〉 = 1√
2

(
c†−1↓c

†
1↑ − c†1↓c†−1↑

)
|0〉

|3P−1 0〉 = c†−1↓c
†
1↓ |0〉

|3P 1−1〉 = c†−1↑c
†
0↑ |0〉

|3P 0−1〉 = 1√
2

(
c†−1↓c

†
0↑ − c†0↓c†−1↑

)
|0〉

|3P−1−1〉 = c†−1↓c
†
0↓ |0〉

That completes the (9-fold degenerate) 3P group.

Likewise, we can choose to start from the basis state with the unique (MS,ML) = (0, 2),
which corresponds to the eigen-state |1D02〉:

 0 1 1 1 0

1 2 3 2 1
0 1 1 1 0

 7→ | •• 〉 7→ c†1↓c
†
1↑ |0〉 (4.40)

Starting from this state, we can apply L− (4 times), to construct the entire 1D group.

0 0 0 0 0
1 1 1 1 1
0 0 0 0 0


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The (5-fold degenerate) 1D eigen-states are:

|1D0 2〉 = c†1↓c
†
1↑ |0〉

|1D0 1〉 = 1√
2

(
c†0↓c

†
1↑ + c†1↓c

†
0↑

)
|0〉

|1D0 0〉 = 1√
6

(
c†−1↓c

†
1↑ + 2c†0↓c

†
0↑ + c†1↓c

†
−1↑

)
|0〉

|1D0−1〉 = 1√
2

(
c†−1↓c

†
0↑ + c†0↓c

†
−1↑

)
|0〉

|1D0−2〉 = c†−1↓c
†
−1↑ |0〉

We have constructed the eigen-states for 3P and 1D. The remaining job is to figure out
1S, in which there is only one eigen-state |1S00〉. If you think about it, you will realize
that we cannot start from any basis state to apply ladder operators. This time, we need
to use the basis orthogonalization relation. The idea is the following:

The three states – |3P 00〉, |1D00〉, |1S00〉 – have the same (MS,ML) = (0, 0). They all live
in the (3-dim) space spanned by {c†−1↓c

†
1↑ |0〉 , c†0↓c†0↑ |0〉 , c†1↓c†−1↑ |0〉}, which are the basis

states with (MS,ML) = (0, 0). Now, |3P 00〉 and |1D00〉 are known, |1S00〉 is an unknown:

0 1 1 1 0

1 2 3 2 1
0 1 1 1 0

 =



0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

 7→ |3P 00〉 7→ v1 = 1√
2

 1

0

−1


+0 0 0 0 0

1 1 1 1 1

0 0 0 0 0

 7→ |1D00〉 7→ v2 = 1√
6

1

2

1


+0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

 7→ |1S00〉 7→ v3 =

ab
c


Given that 〈v3 |v1〉 = 0, 〈v3 |v2〉 = 0, and 〈v3 |v3〉 = 1, we can solve for v3. This is a
typical “basis completion” problem. Here v3 can be somehow figured out easily: it is a
normalized [1,−1, 1]. In general, such a problem can be solved systematically by singular
value decomposition. In this case,

A =

[
1√
2

0 − 1√
2

1√
6

2√
6

1√
6

]
= USV† =

[
1 0
0 1

] [
1 0 0
0 1 0

]
1√
2

0 − 1√
2

1√
6

2√
6

1√
6

1√
3
− 1√

3
1√
3


The last row in V† is the solution vector that we are looking for. The result is:

|1S00〉 = 1√
3

(
c†−1↓c

†
1↑ − c†0↓c†0↑ + c†1↓c

†
−1↑

)
|0〉
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4. LS-coupling and jj-coupling schemes for atomic open-shell problems

Therefore, we conclude that we have constructed the (9-fold degenerate) 3P , (5-fold de-
generate) 1D, and (1-fold degenerate) 1S eigen-states, using ladder operators and orthog-
onalization relations. That is the technique for (analytically) diagonalizing the Coulomb
Hamiltonian HU .

Our discussion in this chapter focuses on constructing the many-electron eigen-states.
The most important physical quantities out of the states are, after all, the eigen-energies.
The multiplet term energies can be analytically expressed in terms of the Slater-Condon
parameters and the Gaunt coefficients (4.12). For the explicit eigen-energy expressions,
see Appendix B.

For general open-shell systems, we set up the many-electron basis using Algorithm 4.1.
The BasisLS class inherits from the general Basis class. It additionally assigns the in-
dividual orbitals and the many-electron states physical meanings, namely, the quantum
numbers. It can apply ladder operators to a vector in the many-electron basis. Algo-
rithm 4.2 produces multiplet terms for open-shell systems with the shell number l and
the number of electrons Ne.

Algorithm 4.1: The BasisLS class (inherit from Basis (Algorithm 1.1)).
1 class BasisLS(Basis ):

2 def __init__(self , l, Ne):

3 Basis.__init__(self , 4*l+2, Ne)

4 self.l = l # Shell l

5
6 # Quantum numbers of indiviual orbitals

7 self.ml = [l-a%(2*l+1) for a in range(self.Norb)] # Orbital ml

8 self.ms = [0.5-a//(2*l+1) for a in range(self.Norb)] # Orbital ms

9
10 # Quantum numbers of many -electron basis

11 self.ML = [self.getML(iconf) for iconf in self.conf] # Basis total ML

12 self.MS = [self.getMS(iconf) for iconf in self.conf] # Basis total MS

13
14 # Calculate total ML of iconf

15 def getML(self , iconf):

16 return sum(self.ml[a] for a in range(self.Norb) if isBit(iconf , a))

17
18 # Calculate total MS of iconf

19 def getMS(self , iconf):

20 return sum(self.ms[a] for a in range(self.Norb) if isBit(iconf , a))

21
22 # Apply L- to a vector (in the many -electron basis)

23 def Lm(self , v):

24 w = np.zeros(self.dim)

25 # Apply L- to non -zero basis states

26 for i in np.nonzero(v)[0]:

27 iconf = self.conf[i]

28 # Orbitals with ml > -l

29 for a in list(range(self.Norb //2 -1))+ list(range(self.Norb//2,self.Norb -1)):

30 # Apply l-

31 b = a + 1

32 if isBit(iconf , a) and not isBit(iconf , b):

33 jconf = setBit(clearBit(iconf , a), b)

34 j = self.index[jconf]

35 alpha = math.sqrt((self.l+self.ml[a])*( self.l-self.ml[a]+1))

36 w[j] += alpha*v[i] # fsign = 1

37 return w/np.linalg.norm(w)

38
39 # Apply S- to a vector (in the many -electron basis)
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40 def Sm(self , v):

41 w = np.zeros(self.dim)

42 # Apply S- to non -zero basis states

43 for i in np.nonzero(v)[0]:

44 iconf = self.conf[i]

45 # Orbitals with up -spin

46 for a in range(self.Norb //2):

47 # Apply s-

48 b = a + self.Norb //2

49 if isBit(iconf , a) and not isBit(iconf , b):

50 jconf = setBit(clearBit(iconf , a), b)

51 j = self.index[jconf]

52 mask = (-1<<(a+1))^(-1<<b)

53 fsign = 1-2*( countBit(iconf&mask )&1)

54 w[j] += fsign*v[i] # alpha = 1

55 return w/np.linalg.norm(w)

Algorithm 4.2: Construct multiplet terms for an open-shell system
1 from basis import BasisLS

2 import numpy as np

3
4 def multiplet_terms(l, Ne):

5 # Set up basis

6 B = BasisLS(l, Ne)

7
8 # Set up MS-ML table (MS can be half -integer)

9 MSList = sorted(set(B.MS), reverse=True)

10 MLList = sorted(set(B.ML), reverse=True)

11 MSML = list(zip(B.MS, B.ML)) # Basis (MS, ML) tuples

12 table = {MS: {ML: MSML.count((MS,ML)) for ML in MLList} for MS in MSList}

13
14 # Scan the table and collect multiplet terms

15 terms = []

16 for S in MSList [:len(MSList )//2+1]:

17 for L in MLList [:len(MLList )//2+1]:

18 N = table[S][L]

19 if N>0:

20 for MS in np.arange(-S, S+1):

21 for ML in np.arange(-L, L+1):

22 table[MS][ML] -= N

23 terms.append ((S, L, N))

24
25 # Construct multiplet eigen -vectors

26 vecs = {}

27 for (S, L, N) in terms:

28 for sn in range(N):

29 vecs[(S,L,sn)] = {MS: {ML: np.zeros(B.dim) for ML in np.arange(-L, L+1)}

30 for MS in np.arange(-S, S+1)}

31
32 # Prepare (N-number -of) leading vectors (leading means MS=S, ML=L)

33 if N==1 and MSML.count ((S,L))==1:

34 # Unique basis state

35 vecs[(S,L ,0)][S][L][MSML.index((S,L))] = 1

36 else:

37 # Previous vecs with MS=S, ML=L

38 P = [pv[S][L] for ((pS,pL,psn),pv) in vecs.items()

39 if (pS >=S and pL >L) or (pS>S and pL >=L)]

40 # Solve an SVD problem to complete the orthonormal basis

41 nz = [MSMLi ==(S,L) for MSMLi in MSML]

42 A = [p[nz] for p in P]

43 vh = np.linalg.svd(A)[2]

44 for sn in range(N):

45 vecs[(S,L,sn)][S][L][nz] = vh[len(P)+sn]

46
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47 # Ladder operator technique

48 for sn in range(N):

49 for MS in np.arange(S, -S, -1):

50 vecs[(S,L,sn)][MS -1][L] = B.Sm(vecs[(S,L,sn)][MS][L]) # Apply S-

51 for MS in np.arange(S, -S-1, -1):

52 for ML in np.arange(L, -L, -1):

53 vecs[(S,L,sn)][MS][ML -1] = B.Lm(vecs[(S,L,sn)][MS][ML]) # Apply L-

54 return (terms , vecs , B)

The function multiplet terms returns a tuple of results: terms is a list of multiplet
names. Each term in terms is a tuple (S, L,N), which represents the multiplet name:
N×2S+1L, where N is the number of seniorities (will be explained shortly). vecs is the
collection of the (eigen-)vectors (constructed by the ladder operators) in the basis B. In
general, vecs is a huge object. It contains dimH vectors, and each vector contains dimH

elements. However, many of the elements in the vectors are zeros, because the LS-basis
is a “good basis” for the Coulomb Hamiltonian. (Note: to print out vecs, it’s better to
output only the non-zero elements and the corresponding basis states. For example, I
would prefer to output a string in the TeX format like (4.32). (I wouldn’t leave the code
here because it is highly customizable and can look ugly))

Some examples: (here we do not print out the vecs, that will consume too much space)

>>> multiplet terms(1, 2)[0]

[(1,1,1), (0,2,1), (0,0,1)]

That is the p2 system:
3P , 1D, 1S

>>> multiplet terms(2, 3)[0]

[(1.5,3,1), (1.5,1,1), (0.5,5,1), (0.5,4,1), (0.5,3,1), (0.5,2,2), (0.5,1,1)]

That is a d3 system:
4F , 4P , 2H, 2G, 2F , 2×2D, 2P

In a d3 system, there are two 2D terms. They appear to have the same name, but they
are actually two different groups, with different eigen-energies. In the general situation,
2S+1L cannot address a group uniquely. The “seniority number” was introduced by Giulio
Racah [22] to distinguish the groups with the same total S and total L. But physically,
there is nothing new (or deep) here: just two groups happen to have the same total
angular momenta. You might insist to ask, “Well, if the two groups happen to have the
same angular momenta, why don’t they just ‘merge’ into one group?” Remember, for a
given multiplet term, there are precisely (2S + 1)(2L+ 1) group members. So a term has
a limited “number of seats”. But the amount of basis states is often enormous, in the
way that certain (MS,ML)’s appear too often, which, by construction, enforces certain
multiplet terms occur more than once.

The “seniority numbers” lacks physical meanings. For a given N×2S+1L, we can simply
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denote the groups as4

2S+1L
sn

where, sn = 0, 1, 2, · · · , N−1 (4.41)

Correspondingly, in Algorithm 4.2, a state
∣∣2S+1L

sn
MSML

〉
is represented by

vecs[(S,L,sn)][MS][ML]

The “seniority numbers” do not introduce a new physical meaning, but they do introduce
troubles. For instance, within the 2×2D groups, the states that we obtained from vecs in
the routine above are actually not eigen-states. The reason is the following: When we use
the ladder operator technique, we need to start from one leading eigen-state (obtained
from either a unique basis state or by completing the basis). However, for the 2×2D
case, we have to start from two leading eigen-states. By completing the basis (here we
use the numpy.linalg.svd), we get two new states, they span a 2-dim space. Notice
that any two states in this 2-dim space are orthogonal to the previous eigen-states. The
two leading eigen-states live inside this 2-dim plane, but in general, we cannot determine
them. This is the situation when the ladder operator technique gets stuck and we cannot
diagonalize HU fully analytical (what a pity). In general, for an N×2S+1L case, N leading
eigen-states have to be determined numerically, because they depend on the values of the
matrix elements. Luckily, we only need to set up a small matrix representation in the
N -dimensional subspace, and solve a small N -by-N matrix problem numerically. Once
the N leading eigen-states are determined, we can continue applying the ladder operators
to get the rests.

4.4.2. Diagonalizing HSO in the LS-basis

We have completed the discussion of diagonalizing HU analytically in the LS-basis. Now
we ask: what if we introduce the spin-orbit Hamiltonian HSO? The problem is that the
spin-orbit Hamiltonian HSO does not commute with the operators S or L. Consequently,
S, L, MS, ML are not the proper quantum numbers for the eigen-states of HSO. However,
HSO does commute with the total angular momentum J.

Proof:

We want to prove that

[HSO, L] 6= 0, [HSO, S] 6= 0, [HSO, J] = 0 (4.42)

where

HSO =
Ne∑
i=1

ξ(ri)`i · si and J = L + S (4.43)

Consider the individual components [`i · si, `i] and [`i · si, si]: (here we drop index i

4This is not the original definition of the seniority number [22]. Here we simplified the discussion.

75



4. LS-coupling and jj-coupling schemes for atomic open-shell problems

for cleanness)

[` · s, `] = [` · s, `xx̂ + `yŷ + `zẑ]

= [` · s, `xx̂] + [` · s, `yŷ] + [` · s, `zẑ]

Focusing on the first term:

[` · s, `xx̂] = [`xsx, `xx̂] + [`ysy, `xx̂] + [`zsz, `xx̂]

= sx[`x, `x]x̂ + sy[`y, `x]x̂ + sz[`z, `x]x̂

= sx(0)x̂ + sy(−i`z)x̂ + sz(i`y)x̂

= i(`ysz − `zsy)x̂
= i(`× s)xx̂

The same argument applies to the other two components. Therefore,

[` · s, `] = i(`× s)xx̂ + i(`× s)yŷ + i(`× s)zẑ = i(`× s) (4.44)

Likewise,
[` · s, s] = i(s× `) (4.45)

Therefore, the spin-orbit Hamiltonian does not commute with total L or total S,

[HSO, L] = i
Ne∑
i=1

ξ(ri)`i × si [HSO, S] = i
Ne∑
i=1

ξ(ri)si × `i (4.46)

However, it commutes with the total J, (the two above cancel each other)

[HSO, J] = [HSO, L] + [HSO, S] = 0 Q.E.D. (4.47)

The physical intuition is that the spin-orbit interaction is invariant if one rotates all
degrees of freedom. Now, both HU and HSO commute with J. It follows that

[HU +HSO, J
2] = 0 and [HU +HSO, Jz] = 0 (4.48)

Consequently, we can label an eigen-state of the full Hamiltonian (HU + HSO) with two
quantum numbers: J , MJ .

In the LS-coupling scheme, we solve the the additional HSO perturbatively within the HU

degenerate multiplet terms. Within each multiplet term, the eigen-states are:∣∣2S+1LJMJ

〉
(4.49)

In general, within a multiplet term,∣∣2S+1LJMJ

〉
=

∑
MS+ML=MJ

CMSML

∣∣2S+1LMSML

〉
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which is a Clebsch-Gordan transformation (see Section 4.6). As a result, a multiplet term
2S+1L is further divided into terms

2S+1LJ where, J = |L−S|, |L−S|+1, · · · , L+S (4.50)

For each J ,
MJ = −J, −J+1, · · · , −1, 0, 1, · · · , J−1, J

For instance, consider the 3P term of the p2 system. The |3PMSML
〉 states are:

|3P 1 1〉 |3P 1 0〉 |3P 1−1〉
|3P 0 1〉 |3P 0 0〉 |3P 0−1〉
|3P−1 1〉 |3P−1 0〉 |3P−1−1〉

Performing a Clebsch-Gordan transformation, we obtain the |3PJMJ
〉 states:

|3P2 2〉 |3P2 1〉 |3P2 0〉 |3P2−1〉 |3P2−2〉
|3P1 1〉 |3P1 0〉 |3P1−1〉

|3P0 0〉

In this manner, the 3P group splits into 3 sub-groups with distinct J :

3P (9-fold degenerate) =


3P2 (5-fold degenerate)
3P1 (3-fold degenerate)
3P0 (1-fold degenerate)

which is the fine-structure spin-orbit splitting within the multiplet term.

Summary:

1. We can (pictorially) understand the LS-coupling scheme as follows:

• In the many-electron LS-basis, HU is block-diagonal; HSO is non-diagonal;

• In the
∣∣2S+1LMSML

〉
basis, HU is diagonal (up to seniority); HSO is non-

diagonal;

• In the
∣∣2S+1LJMJ

〉
basis, HU is diagonal (up to seniority); HSO is diagonal

within each multiplet term, but it has off-diagonal elements between states
from different multiplet terms. Those off-diagonal elements are presumably
small if the spin-orbit interaction is indeed a perturbation.

2.
∣∣2S+1LMSML

〉
can be obtained by the ladder operator technique (L± and S±).

They are collected into degenerate groups called the multiplet terms:

2S+1L (2S + 1)(2L+ 1)-fold degenerate

3.
∣∣2S+1LJMJ

〉
can be obtained by the Clebsch-Gordan transformation within each
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4. LS-coupling and jj-coupling schemes for atomic open-shell problems

multiplet term. They form the fine-structure multiplet terms:

2S+1LJ (2J + 1)-fold degenerate

4.5. The jj-coupling scheme

In the jj-coupling scheme, we first diagonalize HSO exactly, and then solve HU as a
perturbation.

4.5.1. Diagonalizing HSO in the jj-basis

Diagonalizing HSO in the jj-basis is simple, because HSO is diagonal in the jj-basis.

From (4.44) and (4.45), we see that HSO commutes with the individual ji:

[HSO, `i] = −[HSO, si] ⇒ [HSO, ji] = 0 (4.51)

This allows an eigen-state of HSO to be labelled by a set of individual quantum numbers:

{ji, µi} for i ∈ occ

Thus, for each eigen-state of HSO, we denote,∣∣∣(j1, j2 · · · jNe)(µ1,µ2···µNe )

〉
(4.52)

which maps to the jj-basis states exactly.

For a given shell (n, l), the spin-orbit matrix elements in the jj-basis (4.19) are diagonal:

Xαβ =
1

2
Ξnl

[
jα(jα + 1)− l(l + 1)− 3

4

]
δαβ (4.53)

where Ξnl = 〈Rnl| ξ(r) |Rnl〉.
For a system with Ne electrons, the eigen-energy of a jj-basis state reads,

ESO =
1

2
Ξnl

Ne∑
i=1

[
ji(ji + 1)− l(l + 1)− 3

4

]
(4.54)

The eigen-energies are only determined by the j quantum numbers (not µ) of the occupied
orbitals. For instance, both (the orbital quantum numbers are given in Fig. 4.1b)

•
• and

•
•

have the same energy

ESO =
1

2
Ξnl

[(
3
2
· 5

2
− 2− 3

4

)
+
(

1
2
· 3

2
− 2− 3

4

)]
= −1

2
Ξnl (4.55)
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Therefore, a jj-tuple
(j1, j2 · · · jNe)

defines a degenerate spin-orbit term [23]. What is its degeneracy? It is a combinatorics
problem: Let N+ be the number of ji’s that are equal to l+ 1

2
, and N− be the number of

ji’s that are equal to l − 1
2

(if l = 0, then N− = 0). We have,

degeneracy =

(
2l + 2

N+

)(
2l

N−

)
(4.56)

Consider the jj-basis states of the p2 system. The basis states can be grouped into
degenerate terms (Fig. 4.3).

jj-tuple Basis states (also eigen-states of HSO) Term energies

(
3
2
, 3

2

) • • • • • •
Ξnl

• • • • • •

(
3
2
, 1

2

) •
•

•
•

•
•

•
• −1

2
Ξnl

•
•

•
•

•
•

•
•

(
1
2
, 1

2

)
• • −2Ξnl

Figure 4.3.: The many-electron basis states of a p2 shell in the jj-coupling scheme. The
basis states are grouped into degenerate terms according to the j’s of the
occupied orbitals. The orbital quantum numbers are given in Fig. 4.1b.

4.5.2. Diagonalizing HU in the jj-basis

Now, we introduce the Coulomb Hamiltonian HU .

Because [HU , ji] 6= 0 (since [HU , `i] 6= 0 and [HU , si] = 0), the jj-basis states are in
general no longer eigen-states. But, since both HU and HSO commute with J, an eigen-
state of the full Hamiltonian (HU + HSO) can be labelled by two quantum numbers: J ,
MJ .

In the jj-coupling scheme, we solve the the additional HU perturbatively within the HSO

degenerate spin-orbit terms. Within each spin-orbit term, the eigen-states are

|(j1, j2 · · · jNe)JMJ
〉 (4.57)
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Thus, a spin-orbit term is divided into fine-structured spin-orbit terms

(j1, j2 · · · jNe)J (4.58)

within each term,

MJ = −J, −J+1, · · · , −1, 0, 1, · · · , J−1, J

In general, an eigen-state |(j1, j2 · · · jNe)JMJ
〉 is a linear combination of the jj-basis states

with the same (j1, j2 · · · jNe) and
∑

i µi = MJ . Previously we used an MS-ML table to
collect the multiplet terms. Similarly, here we use a (j1, j2 · · · jNe)-MJ table to collect the
fine-structure spin-orbit terms. Consider the p2 system:

MJ

2 1 0 −1 −2(
3
2
, 3

2

)
1 1 2 1 1

(j1, j2)
(

3
2
, 1

2

)
1 2 2 2 1(

1
2
, 1

2

)
0 0 1 0 0

Each row stands for one spin-orbit term subspace. Within each subspace, we can construct
eigen-states of HU using the ladder operator technique (J±). For the p2 system, the groups
are:

1 1 2 1 1
1 2 2 2 1
0 0 1 0 0

 =



1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

 +

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

 (
3
2
, 3

2

)
2

+
(

3
2
, 3

2

)
0

+0 0 0 0 0

1 1 1 1 1

0 0 0 0 0

 +

0 0 0 0 0

0 1 1 1 0

0 0 0 0 0

 (
3
2
, 1

2

)
2

+
(

3
2
, 1

2

)
1

+0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

 (
1
2
, 1

2

)
0

Using the ladder operator technique and the orthogonalization relations, we can construct
the 15 eigen-states:
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∣∣∣(3
2
, 3

2

)
2 2

〉
= c†3

2
1
2

c†3
2

3
2

|0〉∣∣∣(3
2
, 3

2

)
2 1

〉
= c†3

2
1̄
2

c†3
2

3
2

|0〉∣∣∣(3
2
, 3

2

)
2 0

〉
=

(
√
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2
c†3

2
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2

c†3
2
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2

+
√

2
2
c†3

2
1̄
2

c†3
2

1
2

)
|0〉

∣∣∣(3
2
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2

)
0 0

〉
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(
√

2
2
c†3

2
3̄
2

c†3
2

3
2

−
√

2
2
c†3

2
1̄
2

c†3
2

1
2

)
|0〉∣∣∣(3

2
, 3

2

)
2−1

〉
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2
3̄
2

c†3
2

1
2

|0〉∣∣∣(3
2
, 3

2

)
2−2

〉
= c†3

2
3̄
2

c†3
2

1̄
2

|0〉∣∣∣(3
2
, 1

2

)
2 2

〉
= c†1

2
1
2

c†3
2

3
2

|0〉∣∣∣(3
2
, 1

2

)
2 1

〉
=

(
1
2
c†1

2
1̄
2

c†3
2

3
2

+
√

3
2
c†1

2
1
2

c†3
2

1
2

)
|0〉

∣∣∣(3
2
, 1

2

)
1 1

〉
=

(
√

3
2
c†1

2
1̄
2

c†3
2

3
2

− 1
2
c†1

2
1
2

c†3
2

1
2

)
|0〉∣∣∣(3

2
, 1

2

)
2 0

〉
=

(
√

2
2
c†1

2
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2

c†3
2

1
2

+
√

2
2
c†1

2
1
2

c†3
2

1̄
2
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∣∣∣(3
2
, 1

2

)
1 0

〉
=

(
√

2
2
c†1

2
1̄
2

c†3
2

1
2

−
√

2
2
c†1

2
1
2

c†3
2

1̄
2

)
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2
, 1

2

)
2−1

〉
=

(
√

3
2
c†1

2
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2

c†3
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2
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2
1
2
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2
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2
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2
, 1

2
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〉
=

(
1
2
c†1

2
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2

c†3
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1̄
2

−
√

3
2
c†1

2
1
2

c†3
2

3̄
2
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2
, 1

2
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2−2

〉
= c†1

2
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2

c†3
2
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2
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2
, 1

2

)
0 0
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c†1
2

1
2

|0〉

where, for a better alignment, I used a notation c†jµ̄ ← c†j,−µ (as if lifting the minus sign
to the top, sorry for the confusion that it looks like the complex conjugate symbol).

For general open-shell systems, we set up the many-electron basis using Algorithm 4.3.
The BasisJJ class (similar to the BasisLS class) inherits from the general Basis class
(Algorithm 1.1). Algorithm 4.4 produces the spin-orbit terms for open-shell systems with
given shell number l and the number of electrons Ne.

Algorithm 4.3: The BasisJJ class (inherit from Basis (Algorithm 1.1))
1 class BasisJJ(Basis ):

2 def __init__(self , l, Ne):

3 Basis.__init__(self , 4*l+2, Ne)

4 self.l = l # Shell l

5
6 # Quantum numbers of indiviual orbitals

7 self.j = [l+0.5-a//(2*l+2) for a in range(self.Norb)] # Orbital j

8 self.mj = [self.j[a]-a%(2*l+2) for a in range(self.Norb)] # Orbital mj

9
10 # Quantum numbers of many -electron basis

11 self.jj = [self.getjj(iconf) for iconf in self.conf] # Basis jj-tuple

12 self.MJ = [self.getMJ(iconf) for iconf in self.conf] # Basis total MJ

13
14 # Collect jj-tuple of iconf

15 def getjj(self , iconf):

16 return tuple(self.j[a] for a in range(self.Norb) if isBit(iconf , a))

17
18 # Calculate total MJ of iconf

19 def getMJ(self , iconf):

20 return sum(self.mj[a] for a in range(self.Norb) if isBit(iconf , a))
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21
22 # Apply J- to a vector (in the many -electron basis)

23 def Jm(self , v):

24 w = np.zeros(self.dim)

25 # Apply J- to non -zero basis states

26 for i in np.nonzero(v)[0]:

27 iconf = self.conf[i]

28 # Orbitals with mj > -j

29 for a in list(range(self.Norb //2))+ list(range(self.Norb //2+1 , self.Norb -1)):

30 # Apply j-

31 b = a + 1

32 if isBit(iconf , a) and not isBit(iconf , b):

33 jconf = setBit(clearBit(iconf , a), b)

34 j = self.index[jconf]

35 alpha = math.sqrt((self.j[a]+self.mj[a])*( self.j[a]-self.mj[a]+1))

36 w[j] += alpha*v[i] # fsign = 1

37 return w/np.linalg.norm(w)

Algorithm 4.4: Construct spin-orbit terms for an open-shell system
1 from basis import BasisJJ

2 import numpy as np

3
4 def spinorbit_terms(l, Ne):

5 # Set up basis

6 B = BasisJJ(l, Ne)

7
8 # Set up jj-MJ table (jj are tuples , MJ can be half -integer)

9 jjList = sorted(set(B.jj), reverse=True)

10 MJList = sorted(set(B.MJ), reverse=True)

11 jjMJ = list(zip(B.jj, B.MJ)) # Basis (jj, MJ) tuples

12 table = {jj: {MJ: jjMJ.count((jj,MJ)) for MJ in MJList} for jj in jjList}

13
14 # Scan the table and collect spin -orbit terms

15 terms = []

16 for jj in jjList:

17 for J in MJList [:len(MJList )//2+1]:

18 N = table[jj][J]

19 if N>0:

20 for MJ in np.arange(-J, J+1):

21 table[jj][MJ] -= N

22 terms.append ((jj, J, N))

23
24 # Construct spin -orbit eigen -vectors

25 vecs = {}

26 for (jj, J, N) in terms:

27 for sn in range(N):

28 vecs[(jj,J,sn)] = {MJ: np.zeros(B.dim) for MJ in np.arange(-J, J+1)}

29
30 # Prepare (N-number -of) leading vectors (leading means MJ=J)

31 if N==1 and jjMJ.count ((jj ,J))==1:

32 # Unique basis state

33 vecs[(jj,J ,0)][J][jjMJ.index((jj,J))] = 1

34 else:

35 # Previous vecs with MJ=J

36 P = [pv[J] for ((pjj ,pJ ,psn),pv) in vecs.items() if pjj==jj and pJ >J]

37 # Solve an SVD problem to complete the orthonormal basis

38 nz = [jjMJi ==(jj,J) for jjMJi in jjMJ]

39 A = [p[nz] for p in P]

40 vh = np.linalg.svd(A)[2]

41 for sn in range(N):

42 vecs[(jj,J,sn)][J][nz] = vh[len(P)+sn]

43
44 # Ladder operator technique

45 for sn in range(N):
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46 for MJ in np.arange(J, -J, -1):

47 vecs[(jj,J,sn)][MJ -1] = B.Jm(vecs[(jj ,J,sn)][MJ]) # Apply J-

48 return (terms , vecs , B)

The function spinorbit terms works in the way same as the function multiplet terms

(Algorithm 4.2). In the return, terms is a list of fine-structured spin-orbit term names.
Each term in terms is a tuple ((j1, j2 · · · jNe), J,N), which represents: N×(j1, j2 · · · jNe)J ,
where N is the number of seniorities. vecs is the collection of the (eigen-)vectors (con-
structed by the ladder operators) in the basis B.

Some examples: (only print out the terms)

>>> spinorbit terms(1, 2)[0](
3
2
, 3

2

)
2
,
(

3
2
, 3

2

)
0
,
(

3
2
, 1

2

)
2
,
(

3
2
, 1

2

)
1
,
(

1
2
, 1

2

)
0

That is the p2 system – agrees with what we have discussed.

>>> spinorbit terms(2, 3)[0](
5
2
, 5

2
, 5

2

)
9
2

,
(

5
2
, 5

2
, 5

2

)
5
2

,
(

5
2
, 5

2
, 5

2

)
3
2

,
(

5
2
, 5

2
, 3

2

)
11
2

,
(

5
2
, 5

2
, 3

2

)
9
2

,

2×
(

5
2
, 5

2
, 3

2

)
7
2

, 2×
(

5
2
, 5

2
, 3

2

)
5
2

, 2×
(

5
2
, 5

2
, 3

2

)
3
2

,
(

5
2
, 5

2
, 3

2

)
1
2

,
(

5
2
, 3

2
, 3

2

)
9
2

,(
5
2
, 3

2
, 3

2

)
7
2

, 2×
(

5
2
, 3

2
, 3

2

)
5
2

,
(

5
2
, 3

2
, 3

2

)
3
2

,
(

5
2
, 3

2
, 3

2

)
1
2

,
(

3
2
, 3

2
, 3

2

)
3
2

That is the d3 system. Similar to the multiplet terms, because of HU , there are also
“seniority cases” for the fine-structured spin-orbit terms that different terms can have the
same angular momenta.

Summary:

1. We can (pictorially) understand the jj-coupling scheme as follows:

• In the many-electron jj-basis, HSO is diagonal; HU is non-diagonal;

• In the |(j1, j2 · · · jNe)JMJ
〉 basis, HSO is diagonal; HU is diagonal (up to

seniority) within each spin-orbit term, but it has off-diagonal elements
between states from different spin-orbit terms. Those off-diagonal elements
are presumably small if the Coulomb interaction is indeed a perturbation
(rare case).

2. The jj-basis states can be collected into degenerate groups called the spin-orbit
terms:

(j1, j2 · · · jNe)
(

2l + 2

N+

)(
2l

N−

)
-fold degenerate

3. |(j1, j2 · · · jNe)JMJ
〉 can be obtained by the ladder operator technique (J±) within

each spin-orbit term. They form the fine-structure spin-orbit terms:

(j1, j2 · · · jNe)J (2J + 1)-fold degenerate
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4. LS-coupling and jj-coupling schemes for atomic open-shell problems

4.6. Transformation between LS-basis and jj-basis states

In this section, we will discuss how to transform a many-body state given in the jj-basis in
terms of the LS-basis states, and vice versa. The transformation is useful and sometimes
necessary when computing the matrix elements. In particular, the evaluation of the
Coulomb matrix element requires explicitly integrating over the real space coordinates
r1 and r2, where the wave functions Rnl and Ylm are used. The wave functions are the
orbitals in the LS-basis. Thus, the computation of the Coulomb matrix elements has to
be performed in the LS-basis.

In the previous sections, we used the notations c†α and cα for the creation and annihila-
tion operators in both the LS- and the jj-coupling schemes. In this section, to better
distinguish the two bases, for a given shell, I use

c†mσ, cmσ for LS-basis orbitals

d†jµ, djµ for jj-basis orbitals

The one-electron orbitals in the LS- and the jj-basis are related by the Clebsch-Gordan
transformation. For a review purpose, we do a small exercise.

Exercise:

Suppose we have an electron in a p-shell. Express the one-electron state d†jµ |0〉 in

terms of c†mσ |0〉.
Solution:

In a p-shell (l = 1 and s = 1
2
), the possible j’s are 3

2
and 1

2
.

We start from the leading state d†jµ |0〉 = d†3
2

3
2

|0〉. Among the c†mσ |0〉 states, the only

state that fulfills m+ σ = µ = 3
2

is c†1↑ |0〉. Hence,

d†3
2

3
2

|0〉 = c†1↑ |0〉 (4.59)

The subsequent states can be obtained by applying the lowering ladder operators:

J−d
†
3
2

3
2

|0〉 = (L− + S−)c†1↑ |0〉 ⇒ d†3
2

1
2

|0〉 =

√
2

3
c†0↑ |0〉+

√
1

3
c†1↓ |0〉 (4.60)

Keep applying J−, we obtain,

d†3
2
,− 1

2

|0〉 =

√
1

3
c†−1↑ |0〉+

√
2

3
c†0↓ |0〉 (4.61)

d†3
2
,− 3

2

|0〉 = c†−1↓ |0〉 (4.62)
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The next leading state is d†jµ |0〉 = d†1
2

1
2

|0〉. It is related to d†3
2

1
2

|0〉 by the same µ = 1
2
.

Using the orthogonalization relation, we have, (here enters a phase convention, since
both d†1

2
1
2

|0〉 and −d†1
2

1
2

|0〉 are orthogonal to d†3
2

1
2

|0〉.)

d†1
2

1
2

|0〉 =

√
1

3
c†0↑ |0〉 −

√
2

3
c†1↓ |0〉 (4.63)

Applying J−, we get,

d†1
2
,− 1

2

|0〉 =

√
2

3
c†−1↑ |0〉 −

√
1

3
c†0↓ |0〉 (4.64)

Done! We have expressed all d†jµ |0〉 as linear combinations of c†mσ |0〉:

d†jµ |0〉 =
∑
m,σ

c†mσ |0〉 〈0| cmσd†jµ |0〉 (4.65)

where 〈0| cmσd†jµ |0〉 are the Clebsch-Gordan coefficients. Notice that they are evaluated
not from explicit integrals but using the ladder operator technique (an example code is
given in Algorithm 4.5). Equivalently, we can relate the electron creators of the two bases
as

d†jµ =
∑
m,σ

〈0| cmσd†jµ |0〉 c†mσ (4.66)

Now, we can transform the many-body states. For example, consider the jj-basis state

| • • 〉 = d†1
2
,− 1

2

d†3
2

3
2

|0〉

According to (4.59) and (4.64), we have

d†1
2
,− 1

2

d†3
2

3
2

|0〉 =

(√
2

3
c†−1↑ −

√
1

3
c†0↓

)(
c†1↑

)
|0〉 =

(√
2

3
c†−1↑c

†
1↑ −

√
1

3
c†0↓c

†
1↑

)
|0〉 (4.67)

In our configuration-diagram language, Eqn. (4.67) says,

| • • 〉 =

√
2

3
| • • 〉 −

√
1

3
| • • 〉 (4.68)

This is how we express a jj-basis state in terms of LS-basis states. Suppose (for a given
system) we have transformed all the jj-basis states into the LS-basis states. We collect
all the vectors (as columns) in a matrix:

U = [ v1 |v2 | · · · |vdimH
] (4.69)
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4. LS-coupling and jj-coupling schemes for atomic open-shell problems

where vi is the vector representation of the i-th jj-basis state in the LS-basis. Now, with
this U matrix (unitary), we can transform an arbitrary state between LS- and jj-basis
representations straightforwardly:

vLS = U vjj (4.70)

vjj = U†vLS (4.71)

where vLS and vjj are the two representations of the same state in the LS-basis and the
jj-basis, respectively. Certainly, this unitary transformation also enables us to transform
matrix representations between the two bases:

HLS = U Hjj U† (4.72)

Hjj = U†HLSU (4.73)

Algorithm 4.5: Compute Clebsch-Gordan coefficients using the ladder operator technique
(cg.py).

1 from math import sqrt

2 import numpy as np

3
4 # Clebsch -Gordan table (j1 , j2 must be non -negative int or half -int)

5 def CG(j1 , j2):

6 Jmax = j1+j2; Jmin = abs(j1-j2)

7
8 # (J,M)-basis (row index)

9 JM = [(J,M) for J in np.arange(Jmax ,Jmin -1,-1) for M in np.arange(J,-J-1,-1)]

10 # (m1,m2)-basis (col index)

11 mm = [(m1 ,m2) for m1 in np.arange(j1 ,-j1 -1,-1) for m2 in np.arange(j2,-j2 -1,-1)]

12
13 # CG table

14 T = {JMi: {mmj: 0 for mmj in mm} for JMi in JM}; T[(Jmax ,Jmax )][(j1,j2)] = 1.0

15 for J in np.arange(Jmax , Jmin -1, -1):

16 # Leading |J J>

17 if J<Jmax:

18 # Previous |Jmax J> ... |J+1 J>

19 P = [T[(Jp ,M)] for (Jp,M) in JM if Jp>J and M==J]

20 # Make |J J> orthogonal to |Jmax J> ... |J+1 J>

21 mmJ = [(m1,m2) for (m1,m2) in mm if m1+m2==J]

22 A = [[p[mmj] for mmj in mmJ] for p in P]

23 v = np.linalg.svd(A)[2][ -1]

24 v *= np.sign(v[mmJ.index((j1 ,J-j1))]) # Phase convention

25 for (j,mmj) in enumerate(mmJ): T[(J,J)][ mmj] = v[j]

26
27 # Apply J- = j1- + j2- to get subsequent |J J-1> ... |J -J>

28 for M in np.arange(J, -J, -1):

29 mm1 = ((m1,m2) for (m1,m2) in mm if m1+m2==M and m1>-j1)

30 mm2 = ((m1,m2) for (m1,m2) in mm if m1+m2==M and m2>-j2)

31 for (m1,m2) in mm1:

32 T[(J,M -1)][(m1 -1,m2)] += T[(J,M)][(m1 ,m2)]* sqrt((j1+m1)*(j1-m1+1)/(J+M)/(J-M+1))

33 for (m1,m2) in mm2:

34 T[(J,M -1)][(m1,m2 -1)] += T[(J,M)][(m1 ,m2)]* sqrt((j2+m2)*(j2-m2+1)/(J+M)/(J-M+1))

35 return T
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4.7. The intermediate-coupling scheme

The intermediate-coupling scheme is computationally more expensive, but conceptually,
it is the most straightforward scheme. In the LS-coupling scheme, HU is treated exactly
and HSO is a perturbation within the multiplet terms; In the jj-coupling scheme, HSO

is treated exactly and HU is a perturbation within spin-orbit terms. Both LS- and jj-
coupling schemes involve perturbative approximations such that analytical solutions are
possible. In the intermediate-coupling scheme, the Coulomb HU and the spin-orbit HSO

are treated on an equal footing: we diagonalize the full Hamiltonian (HU +HSO) exactly.

As we have discussed, the full Hamiltonian (HU +HSO) does not commute with L, S, or
the individual ji. It only commutes with the total J. Consequently, the eigen-states of
(HU +HSO) are labelled as |J,MJ〉. The hope is that we count the MJ of the basis states
and construct eigen-states by the ladder operator J±.

If we choose the LS-basis, we calculate MJ =
∑

i(mi + σi); If we choose the jj-basis, we
calculate MJ =

∑
i µi. Independent of the choice of basis, for a given open-shell system,

we should obtain the same MJ -table counted from the basis states. For instance, for the
simple p2 system, one gets

MJ 2 1 0 −1 −2
#-of-states 2 3 5 3 2

Now, we can collect the groups of eigen-states that are connected by J±:

(
2 3 5 3 2

)
=



(
2 2 2 2 2

)
→ 2× (J = 2)

+(
0 1 1 1 0

)
→ (J = 1)

+(
0 0 2 0 0

)
→ 2× (J = 0)

We are in a situation that the “seniority trouble” (N = 2) occurs from the beginning. We
cannot start from a unique leading state to apply the ladder operators (one can obtain the
two leading states numerically by diagonalizing a 2-by-2 matrix and continue applying the
ladder operators). Embarrassingly, not a single eigen-state can be solved analytically, even
for the simple p2 system. That is the fundamental issue with the intermediate-coupling
scheme – the eigen-states are not analytical. However, in terms of numerical solutions,
the intermediate-coupling scheme produces the best results since both HU and HSO are
treated exactly. As a remark, in the intermediate-coupling scheme, the eigen-energies
of the Hamiltonians are independent of the choice of basis: both the LS-basis and the
jj-basis span the same Hilbert space.

At this stage, the three coupling schemes are discussed. We are in a position to have
a concrete example. In the final part of Chapter 3, we had an example of the DFT
calculation of a lead atom (82Pb) with open-shell 6p2. The lead atom is an ideal candidate
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4. LS-coupling and jj-coupling schemes for atomic open-shell problems

for illustrating the concepts of the three coupling schemes, for two reasons: (1) It has the
simplest non-trivial open-shell p2 system; (2) It is sufficiently heavy (with atomic number
Z = 82), so that the spin-orbit interaction is comparable with the Coulomb interaction.

To calculate realistic matrix elements Üαβγδ and Xαβ for the lead 6p2 open-shell system,
we use the self-consistent radial wave function R6p(r) and the self-consistent mean-field
potential VKS(r) from the DFT calculations. That is the “link” between the two chap-
ters: The DFT results of the atoms prepare the realistic orbital basis for the many-body
calculations.

The final results are summarized in Fig. 4.4. The left three columns describe the LS-
coupling scheme: the degenerate 6p2 shell splits into multiplet terms due to the effect of the
Coulomb interaction; within each term, the energy levels split further due to the spin-orbit
perturbation. The right three columns describe the jj-coupling scheme: the degenerate
6p2 shell splits into spin-orbit terms due to the effect of the spin-orbit interaction; within
each term, the energy levels split further due to the Coulomb perturbation. The column
in the middle displays the numerical results from the intermediate-coupling scheme, which
serves as a reference judging the quality of the LS- and jj-perturbative approximations.
The multiplet and spin-orbit energy splittings are of the order of 10 milli-Hatree. Those
energy gaps are experimentally measurable [24], and we will compare with in the next
chapter. Recall the energy gaps among the shells (Table 3.3), where the energy gaps are
of the order of 1 Hartree, which is two orders of magnitude greater than the multiplet and
spin-orbit splittings. That is the fundamental reason that in most of the systems, to a
good approximation, we can focus on one specific open-shell without taking into account
of the mixture among many shells.

As a remark, in the lead 6p2 open-shell, the strength of the Coulomb and spin-orbit
interactions are of the same order of magnitude. As a result, neither the LS- nor the
jj-coupling schemes are good approximations for the lead 6p2 open-shell, because it is
unfair to treat either of the two interactions as a perturbation. The resulting energy
levels computed from the two schemes have similar qualities and they differ from the
intermediate-coupling scheme results by 30% ∼ 40% in terms of the spectra variance.
The LS-coupling scheme works significantly better for lighter elements, like 6C, 14Si,

32Ge, and 50Sn. The jj-coupling scheme works better for super heavy elements like 114Fl.
Those periodic trends of the many-body effects will be discussed systematically in the
next chapter.
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Figure 4.4.: Comparison between the LS-coupling scheme and the jj-coupling scheme for
a lead (82Pb) atom 6p2 open-shell. Left three columns: LS-coupling scheme;
Right three columns: jj-coupling scheme; Middle column: Intermediate-
coupling scheme.
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5. Trends of many-body effects in
atomic open-shells

5.1. Trends of the matrix elements

In the previous chapter, we discussed solving the many-body problem for atomic open-
shell systems. We formulated the problems using the LS- and jj-coupling schemes so
that we could solve the many-body problems analytically in a perturbative approach.
As for which coupling scheme gives a more accurate result, one must assess the relative
importance between the Coulomb and spin-orbit interaction for the given system. In this
chapter, we are going to study systematically the trends of the two interactions in the
atomic open-shell systems over the entire periodic table.

The building blocks of the many-body Hamiltonians HU and HSO are the matrix elements
Uαβγδ (4.12) and Xαβ (4.13). The matrix elements are the actual medium where the
specific physical information is stored. The study of the trends of the two interactions
is to a certain degree the study of the trends of the matrix elements. As we saw from
Eqns. (4.12), (4.14), and (4.17), the matrix elements can be written as products of radial
and angular components. The angular part of the matrix elements are universal, in the
sense that for shells of the same type (same l), the angular wave functions are identical.
On the other hand, to obtain the radial part of the matrix elements, we use the self-
consistent radial wave functions and the mean-field potentials from the DFT calculations,
which are system dependent. Therefore, our focus is to study the periodic trends of the
radial components of the matrix elements. In particular, we study the atomic open-shell
Slater-Condon parameters F

(k)
nl and the spin-orbit parameters Ξnl:

F
(k)
nl = (RnlRnl|

rk<
rk+1
>

|RnlRnl) (5.1)

Ξnl = 〈Rnl| ξ(r) |Rnl〉 (5.2)

where Rnl (or unl) are the atomic orbital radial wave functions in the open-shell; r< =
min(r1, r2) and r> = max(r1, r2); The form of the two-electron integral in (5.1) is given
in (1.18); ξ(r) is the ` · s proportionality term [21, 25] given in (4.3).

To study the trends, we start our discussion from understanding the general pattern of
the electronic configurations across the periodic table.
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5.2. DFT calculations and the structure of the periodic
table

When performing a DFT calculation for an atomic system, the first step is to specify
the electronic configuration (see Algorithm 3.7). In other words, one has to decide which
orbitals are filled and which ones are empty. In fact, it is not a trivial question to ask,
what is the ground state configuration of a many-body system?

Many-body systems are practically unsolvable, hence the ground state configurations are
analytically unknown. Experimentally, the ground state configurations can be determined
by the examination of atomic spectra [26]. Computationally, through DFT calculations,
we can calculate the total energy of the system and deduce the ground state configuration
by varying the occupations. Consider a calcium atom (20Ca), suppose its ground state
configuration is unknown, we perform DFT calculations with different configurations, as
shown in Table 5.1.

Table 5.1.: DFT (LDA) calculations of a calcium atom (20Ca) with different electronic
configurations.

[Ar] 4s0 3d2

3d2 −0.029299
4s0 −0.126284
3p6 −0.924085
3s2 −1.592119
2p6 −12.157289
2s2 −14.915776
1s2 −143.834285
Etot −675.569058

[Ar] 4s1 3d1

3d1 −0.032338
4s1 −0.123205
3p6 −0.944030
3s2 −1.614527
2p6 −12.182386
2s2 −14.941971
1s2 −143.849655
Etot −675.663819

[Ar] 4s2 3d0

3d0 −0.083078
4s2 −0.141411
3p6 −1.030573
3s2 −1.706331
2p6 −12.285376
2s2 −15.046906
1s2 −143.935181
Etot −675.742283

Evidently, the 4s orbital has a lower energy than the 3d (in contrast to the hydrogen-like
systems), and the 4s orbital should be filled before the 3d. The electronic configuration
[Ar] 4s2 leads to the ground state of the calcium atom (20Ca).

In hydrogen-like systems, the orbital energies are simply determined by the principal
quantum number n (but not l), which is a consequence (and also a coincidence) of solving
the Schrödinger equation (3.1) with the nuclear potential having the 1/r form. However,
solving the many-body systems in the Kohn-Sham approach (3.33) replaces the nuclear
potential by the effective Kohn-Sham potential VKS(r), which immediately breaks the
energy degeneracy among different l states for a given n. Empirically, the filling order for
ground state configurations is summarized by the Aufbau principle with Madelung’s rule:
[27, 28]

1. Orbitals are filled in the order of increasing n+ l;

2. In the case of equal n+ l values, the orbital with a lower n is filled first.
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This gives the following order for filling the orbitals:

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, · · ·

Following the ordering, given that an s-shell can be filled with 2 electrons, a p-shell can
be filled with 6 electrons, a d-shell can be filled with 10 electrons, an f -shell can be filled
with 14 electrons, etc., the entire periodic table arranges automatically into different
blocks according to where the “last” electron resides, as shown in Fig. 5.1. Charles Janet
[29] used the idea and arranged the “left-step periodic table” [30, 31], which may better
represent the shell filling sequence and the block structures.

Figure 5.1.: The s, p, d, f block arrangement of the periodic table.

The block-structured periodic table shown in Fig. 5.1 is arranged ideally according to the
Aufbau principle with Madelung’s rule. The s-block consists of groups 1–2 (IUPAC group
numbering [32]) plus helium; The p-block consists of groups 13–18 excluding helium; The
d-block comprises groups 3–12 (concerning the ambiguity of group 3, see [33]); The f -
block is often offset below (with no group numbers), since it makes the entire periodic
table as wide as shown in Fig. 5.1.

From an experimental point of view, the Aufbau principle with Madelung’s rule agrees
with the ground state configurations for most of the neutral atoms, with only a handful
of exceptions in transition metals, lanthanides, and actinides. For example, the ground
state configuration of copper (29Cu) is measured [26] as [Ar] 4s1 3d10, instead of Madelung’s
[Ar] 4s2 3d9. Table 5.2 lists the 20 exceptions among the neutral atoms. Note that the
configurations of elements beyond hassium (108Hs) have not yet been experimentally ver-
ified [26] (as the elements are extremely short-lived), but they are predicted to follow
Madelung’s rule without exceptions until element 120 (see Reference [34]).

The Aufbau principle with Madelung’s rule describes the general pattern of the ground
state configurations of neutral atoms. The atoms that are ionized (oxidized), on the other
hand, follows a different rule for describing the ground state configurations. Taking iron
(26Fe) as an example, its neutral ground state configuration is measured as [Ar] 4s2 3d6,
which agrees with Madelung’s rule. Now, consider 26Fe+ which has one less electron, its
ground state configuration would be predicted the same as manganese (25Mn) [Ar] 4s2 3d5

by Madelung’s rule, which is, however, incorrect. The ground state configuration of

26Fe+ is measured [24] as [Ar] 4s1 3d6, with one electron leaving from the 4s shell. This

93



5. Trends of many-body effects in atomic open-shells

Table 5.2.: Realistic ground state configurations of neutral atoms that differ from
Madelung’s rule.

Z Element Ground state configuration
24 Cr [Ar] 4s1 3d5

29 Cu [Ar] 4s1 3d10

41 Nb [Kr] 5s1 4d4

42 Mo [Kr] 5s1 4d5

44 Ru [Kr] 5s1 4d7

45 Rh [Kr] 5s1 4d8

46 Pd [Kr] 4d10

47 Ag [Kr] 5s1 4d10

57 La [Xe] 6s2 5d1

58 Ce [Xe] 6s2 4f 1 5d1

64 Gd [Xe] 6s2 4f 7 5d1

78 Pt [Xe] 6s1 4f 14 5d9

79 Au [Xe] 6s1 4f 14 5d10

89 Ac [Rn] 7s2 6d1

90 Th [Rn] 7s2 6d2

91 Pa [Rn] 7s2 5f 2 6d1

92 U [Rn] 7s2 5f 3 6d1

93 Np [Rn] 7s2 5f 4 6d1

96 Cm [Rn] 7s2 5f 7 6d1

103 Lr [Rn] 7s2 5f 14 7p1

“ionization order” is observed (with exceptions, especially in f -blocks) that the electron
with higher n leaves first (for the same n, higher l leaves first). To describe the general
pattern of the ground state configurations of ionized atoms, we first apply the Aufbau
principle with Madelung’s rule to obtain the configuration of the neutral atom, then apply
the “ionization order” to obtain the configurations of different oxidation states.

5.3. Trends of Slater-Condon parameters

The Slater-Condon parameters (or Slater integrals) [35, 36] are the radial components of
the Coulomb matrix elements (4.12) obtained from the multipole expansion (4.11). From
an experimental point of view, the Slater-Condon parameters are not directly measurable.
They enter into atomic spectra via the multiplet calculations, that the multiplet energies
are expressed in terms of combinations of F (k) (see Appendix B and [37, 38]). The task
in this section is to investigate the periodic trends of the Slater-Condon parameters of
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atomic open-shells. For open-shell systems with shell (n, l), we integrate (5.1),

F
(k)
nl =

∫ ∞
0

dr1

∫ ∞
0

dr2
rk<
rk+1
>

|unl(r1)|2|unl(r2)|2 (5.3)

First, we discuss a few analytical properties of this integral: 1. The k-dependence; 2. The
Z-dependence for hydrogen-like wave functions; 3. How to integrate (5.3) in practice.

It can be seen from (5.3) that the integrand is everywhere positive, and since
r0<
r1>
>

r1<
r2>
>

r2<
r3>
> · · · (a geometric sequence with common ratio less than 1), it follows that,

F (0) > F (1) > F (2) > · · · > 0 (5.4)

Being the radial parts of the Coulomb matrix elements, the Slater-Condon parameters
have the dimension of an energy. Physically, the parameters with different k represent
the Hartree energies of the electron densities expanded in multipoles [17]. The monopole
term F (0) has the most significant contribution, and the values of higher multipole terms
reduce for increasing k.

Multipole expansion of a charge density:

Consider a charge density of the form:

ρ(r) = |Rnl(r)|2|Ylm(θ, φ)|2

Inserting the completeness relation of spherical harmonics, and using properties of
Gaunt coefficients, we can express

ρ(r) =
2l∑
k=0

ρ(k)(r) (5.5)

where,
ρ(k)(r) = 〈lm|Yk0 |lm〉 |Rnl(r)|2Yk0(θ, φ) (5.6)

is the k-th multipole term expanded from the charge density. Now, consider the
Coulomb energy between two multipole charge densities:

E(k,k′) =

∫
dr

∫
dr′

ρ(k)(r)ρ(k′)(r′)

|r− r′| (5.7)

Expanding 1
|r−r′| , and using the orthonormalization relation of spherical harmonics,

E(k,k′) = 〈lm|Yk0 |lm〉 〈lm|Yk′0 |lm〉
∞∑
λ=0

F (λ) 4π

2λ+ 1

λ∑
µ=−λ

〈λµ | k0〉 〈k′0 |λµ〉

=
4π 〈lm|Yk0 |lm〉2

2k + 1
F (k)δk,k′ (5.8)
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5. Trends of many-body effects in atomic open-shells

we can see that the Coulomb energies associated with monopole-dipole, monopole-
quadruple, dipole-quadruple, etc. interactions are zero.

The Hartree energy of the charge density is simply,

EHartree =
1

2

∑
k,k′

E(k,k′) =
1

2

2l∑
k=0

E(k) (5.9)

where,

E(k) =
4π 〈lm|Yk0 |lm〉2

2k + 1
F (k) (5.10)

is the Coulomb energy of the k-th multipole interacting with itself.

Consider hydrogen and hydrogen-like wave functions. Suppose,

F
(k)
H =

∫ ∞
0

dr1

∫ ∞
0

dr2
rk<
rk+1
>

|uH(r1)|2|uH(r2)|2 (5.11)

are the integral values for hydrogen wave functions. From the rescaling relation (3.11),
we can see that,

F
(k)
Z =

∫ ∞
0

dr1

∫ ∞
0

dr2
rk<
rk+1
>

|uZ(r1)|2|uZ(r2)|2

=

∫ ∞
0

dr1

∫ ∞
0

dr2
rk<
rk+1
>

|Z 1
2uH(Zr1)|2|Z 1

2uH(Zr2)|2

=
Zk+1

Zk

∫ ∞
0

dρ1

∫ ∞
0

dρ2
ρk<
ρk+1
>

|uH(ρ1)|2|uH(ρ2)|2

= ZF
(k)
H (5.12)

Therefore, the Slater-Condon parameters increase linearly with Z for hydrogen-like wave
functions. The physical picture is that, as Z increases, the hydrogen-like wave functions
shrink. The concentrated densities result in larger Hartree energies.

Now, we discuss how to integrate the Slater integrals in practice. The two-dimensional
integral (5.3) can be reduced to one-dimensional integrals by considering the fact, that
rk<
rk+1
>

is either
rk2
rk+1
1

(when r1 > r2) or
rk1
rk+1
2

(when r1 < r2). Thus Eqn. (5.3) can be reduced

to one-dimensional integrals piece-wise,

F
(k)
nl =

∫ ∞
0

dr1
|unl(r1)|2
rk+1

1

∫ r1

0

dr2 r
k
2 |unl(r2)|2︸ ︷︷ ︸

r1>r2

+

∫ ∞
0

dr1 r
k
1 |unl(r1)|2

∫ ∞
r1

dr2
|unl(r2)|2
rk+1

2︸ ︷︷ ︸
r1<r2

(5.13)
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More instructively, we can evaluate (5.13) step-by-step as follows,

A(r) =

∫ r

0

dr′ r′k|unl(r′)|2 (5.14)

B(r) =

∫ ∞
r

dr′
|unl(r′)|2
r′k+1

(5.15)

F
(k)
nl =

∫ ∞
0

dr |unl(r)|2
[
A(r)

rk+1
+ rkB(r)

]
(5.16)

To be consistent with our earlier discussions, we compute the integrals numerically on the
logarithmic grid (3.12). Recall that dr = rdx, the routine is implemented in Algorithm 5.1.
Here we re-use the cumsimps function defined in Algorithm 3.6 to integrate (5.14) and
(5.15) cumulatively.

Algorithm 5.1: Compute the Slater-Condon parameter F
(k)
nl on a logarithmic grid

1 import scipy.integrate as sp

2
3 # Slater -Condon parameter

4 def Fk(u, k, r, dx):

5 A = cumsimps(u**2*r**(k+1), dx)

6 B = cumsimps ((u**2/r**k)[::-1], dx)[:: -1]

7 return sp.simps(u**2*(A/(r**k)+B*r**(k+1)), dx=dx)

Now, we are in a position to collect the SCF orbitals over the entire periodic table, and
compute the corresponding Slater-Condon parameters. As we mentioned in the previous
chapter, the angular part of the Coulomb matrix element (4.12) vanishes under certain
combinations of the angular momenta. For a shell with angular number l, the non-trivial
expansion indices are k = 0, 2, 4, · · · , 2l. In other words,

• for s-shells we calculate only F (0);

• for p-shells we calculate F (0) and F (2);

• for d-shells we calculate F (0), F (2), and F (4);

• for f -shells we calculate F (0), F (2), F (4), and F (6).

We first perform SCF calculations for all neutral elements with atomic number Z ≤ 118:
from hydrogen (1H) to Oganesson (118Og). From the SCF results, we compute the Slater-
Condon parameters of the open-shells for each atom (the last shell filled according to the
Aufbau principle). In the calculations, the Aufbau principle with Madelung’s rule is used
to set up the electronic configurations. Adopting the rules has the advantage to generate
smooth data, so that the special cases (Table 5.2) do not distract our attention, and the
overall periodic trends become clear to us.

The results are shown in Fig. 5.2. Different k values are plotted with different markers:
F (0) circle; F (2) cross; F (4) square; F (6) hexagram. One can also observe that: for a given
block, F (k) increases smoothly as a function of the atomic number Z. For example, from

21Sc to 30Zn, F (0), F (2), and F (4) all increase as functions of Z. The physical picture is the
following: When Z increases, the nuclear charge increases and the number of electrons also
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5. Trends of many-body effects in atomic open-shells

increases. This additional electron, however, does not screen the nuclear charge effectively,
because the electron is “on-shell” (in contrast to the inner shell electrons). Due to the
larger nuclear attraction, the 3d wave functions shrink as Z increases (in general, within
a block, the atomic radii shrink as Z increases [39]). These concentrated wave functions
give results to larger Hartree energies and the corresponding larger values of F (k). On
the other hand, when a new shell starts, the electron in the new shell experiences only a
small amount of effective nuclear charge. Hence the wave function spreads out and the
corresponding values of F (k) are small.

After studying the trends for the neutral atoms, we generalize the problem from atoms
to their ions. In particular, we study atoms that “lose” electrons, i.e. cations, for the
reason that the atomic systems with fewer electrons are guaranteed to have bound states.
By interpolating the data from the atoms and cations, we should be able to approxi-
mate systems with more arbitrary electronic configurations. For the DFT calculations,
we use the Aufbau principle with Madelung’s rule to set up the neutral configurations,
and apply the “ionization order” (as explained in the previous section) to construct the
oxidation states. Of course, this study involves thousands of calculations, as we perform
DFT calculations for each oxidation state for each element. Fig. 5.3 shows the complete
parameter results from hydrogen (1H) to Oganesson (118Og) with their corresponding ox-
idation states. To represent oxidation levels, we use color coding from dark blue (neutral)
to dark red (highly ionized). Within the same block, for example from 21Sc to 30Zn,
the number of open-shell electrons increases with Z. Therefore there are more oxidation
states for larger Z within a block, which leads to the “triangular shape” for each block.
Notice that Fig. 5.3 includes Fig. 5.2: the data shown in Fig. 5.2 are the ones in Fig. 5.3
with ionization level = 0. Along the oxidation level, we can observe that F (k) increases
smoothly. And the physical picture should be clear: when the electrons are removed, the
shell of interest experiences larger effective nuclear charge, thus the wave functions shrink
and the corresponding values of F (k) increase.

To interpolate the general trends of the data, we perform a least squares fitting. Two
smooth trends are observed in the DFT calculations.

1. For a given block, F (k) increases smoothly with increasing atomic number.

2. For a given atom, F (k) increases smoothly with increasing oxidation level.

First we introduce a variable Nauf , which is the Aufbau filling number on the last shell.
For instance, 26Fe is the 6th element in the 3d-block, hence Nauf = 6; 47Ag is the 9th
element in the 4d-block, hence Nauf = 9; etc..

The first step is to fit the Nauf dependence for a given block and a fixed oxidation state.
For instance, we consider the 3d, 4d, 5d, 6d shells of neutral atoms. To a very good
approximation, F (k) in each shell can be fitted perfectly by a parabola (Fig. 5.4a).

On the other hand, if we fix an atom and vary the oxidation level, we observe a piece-wise
smooth trend. For instance, Fig. 5.4b plots F (2) of the open d-shell wave functions for
Fe, Ru, Os, and Hs ions. The two different slopes are caused by taking electrons from
different shells. Since the outer most s-shells have greater radii [40, 39], losing an electron
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5.3. Trends of Slater-Condon parameters

Figure 5.2.: Slater-Condon parameters calculated from LDA atomic open-shell orbitals
for all neutral elements with atomic number Z ≤ 118. The Aufbau principle
with Madelung’s rule is adopted for electronic configurations. (Number of
data points: 318)

Figure 5.3.: Slater-Condon parameters calculated from LDA atomic open-shell orbitals
for all elements with atomic number Z ≤ 118 and their ions obtained by
removing electrons from the open and outer shells. The Aufbau principle
with Madelung’s rule is adopted for electronic configurations. Colors from
dark blue to dark red represent oxidation states: dark blue – neutral; dark
red – highly ionized. (Number of data points: 2237)
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5. Trends of many-body effects in atomic open-shells

(a) Neutral atoms in the d-block (b) Fe, Ru, Os, Hs ions

Figure 5.4.: Slater-Condon parameters F (2) for d-block atoms. (a) Trends of neutral atoms
in 3d, 4d, 5d, 6d blocks. Each shell can be well fitted by a parabola. (b) Trends
of Fe, Ru, Os, Hs ions. Two slopes are observed for each atom due to two
different sources of ionization. Fitting curves are generated from Table 5.4.

from the outer most s-shells has a much weaker influence on the open d-shells comparing
with losing d-electrons itself.

In the previous section, we discussed the general pattern of the electron ionization order.
In particular, for s- and p-blocks, the electrons start to leave directly from the open-shells;
for d- and f -blocks, the electrons start to leave from the outer most s-shells. For example,
ionizing a 3d shell requires first emptying the outer 4s-shell. For f -blocks, however, the
realistic electronic configurations for the atoms and ions are rather irregular [24]. Here we
simplify the pattern for f -blocks that we first empty the outer most s-shells, then directly
remove electrons from the open-shells, which agrees with most of the experimental results
(e.g. Eu, · · · , Eu4+; Am, · · · , Am6+; etc. [24]).

Taking into account the effect of removing electrons from different shells, we introduce a
new variable qeff , being the “effective charge”. If we assign the value of qeff by losing an
on-shell electron to be 1, then the value of qeff by losing an outer-shell electron should
have a value less than 1. For the d- and f -blocks, it is simply

qeff = qon-shell + λqouter-most-s-shell (5.17)

For instance, if λ = 0.33, the qeff values for 26Fe ions are shown in Table 5.3.

For each block, we have two variables: Nauf and qeff . The fitting is given as,

F (k)(Nauf , qeff) = (α0 + α1qeff + α2q
2
eff) + (β0 + β1qeff)Nauf + (γ0 + γ1qeff)N2

auf (5.18)

where α0, α1, α2, β0, β1, γ0, γ1 and λ (inside qeff) are fitting parameters listed in Table 5.4.
Notice that for s- and p-shells no λ is used since the electrons are ionized directly from
the open-shells. The s- and p-shells use less parameters as the number of data points is
smaller. An example of fitting F (2) in the 3d-block in shown in Fig. 5.5.
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Table 5.3.: Effective charge qeff .

Atom Configuration Oxidation qeff

Fe [Ar] 3d6 4s2 0 0.00
Fe+ [Ar] 3d6 4s1 1 0.33
Fe2+ [Ar] 3d6 2 0.66
Fe3+ [Ar] 3d5 3 1.66
Fe4+ [Ar] 3d4 4 2.66
Fe5+ [Ar] 3d3 5 3.66
Fe6+ [Ar] 3d2 6 4.66
Fe7+ [Ar] 3d1 7 5.66

Figure 5.5.: Least squares fitting of F (2) for the 3d-block atoms with different oxidation
states. The fitting parameters are given in Table 5.4.

The fitting of the parameters is not merely an action of compressing the thousands of
data points. It informs us the trends of the parameters, and we can interpolate systems
with different electronic configurations. For instance, consider a cooper atom 29Cu with
Madelung’s configuration [Ar] 4s2 3d9. Setting (Nauf = 9, qeff = 0) recovers the fitted data
(in Hartree):

Fit: F (0) = 0.98 F (2) = 0.44 F (4) = 0.27

LDA: F (0) = 0.99 F (2) = 0.45 F (4) = 0.28

Now, consider 29Cu with the realistic configuration [Ar] 4s1 3d10. This configuration is
not computed among the data that are used in the study of the trends. Comparing with
Madelung’s configuration, the 4s orbital loses one electron and the 3d orbital gains one
electron. That corresponds to qeff = λ−1 = −0.67. Thus, setting (Nauf = 9, qeff = −0.67),
we obtain results for the realistic configuration (in Hartree):

Fit: F (0) = 0.94 F (2) = 0.41 F (4) = 0.25

LDA: F (0) = 0.93 F (2) = 0.41 F (4) = 0.25
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Table 5.4.: Fitting parameters for calculated open-shell Slater-Condon parameters.

Shell k α0 α1 α2 β0 β1 γ0 γ1 λ

1s 0 0.13 0.19 — 0.43 — — — —
2s 0 0.11 0.046 — 0.12 — — — —
3s 0 0.15 0.036 — 0.067 — — — —
4s 0 0.14 0.025 — 0.043 — — — —
5s 0 0.14 0.022 — 0.034 — — — —
6s 0 0.13 0.019 — 0.028 — — — —
7s 0 0.13 0.017 — 0.025 — — — —

2p 0 0.30 0.096 — 0.11 −2.5e−3 — — —
2 0.13 0.053 — 0.048 −1.2e−3 — — —

3p 0 0.21 0.048 — 0.057 −3.0e−3 — — —
2 0.10 0.029 — 0.028 −1.9e−3 — — —

4p 0 0.24 0.047 — 0.039 −4.1e−3 — — —
2 0.12 0.030 — 0.021 −2.8e−3 — — —

5p 0 0.22 0.036 — 0.029 −3.4e−3 — — —
2 0.11 0.024 — 0.016 −2.3e−3 — — —

6p 0 0.22 0.033 — 0.024 −3.2e−3 — — —
2 0.11 0.022 — 0.014 −2.2e−3 — — —

7p 0 0.21 0.029 — 0.020 −2.8e−3 — — —
2 0.11 0.020 — 0.012 −2.0e−3 — — —

3d 0 0.46 0.099 −1.0e−3 0.068 −8.4e−3 −1.1e−3 4.9e−4 0.33
2 0.20 0.059 −6.3e−4 0.032 −4.9e−3 −5.9e−4 2.9e−4
4 0.12 0.039 −3.9e−4 0.020 −3.2e−3 −3.8e−4 1.9e−4

4d 0 0.32 0.054 −2.9e−4 0.049 −6.0e−3 −9.8e−4 3.3e−4 0.53
2 0.15 0.035 −3.6e−4 0.026 −3.9e−3 −5.7e−4 2.2e−4
4 0.093 0.025 −2.5e−4 0.017 −2.7e−3 −3.9e−4 1.5e−4

5d 0 0.32 0.048 −2.7e−4 0.039 −5.9e−3 −8.9e−4 3.2e−4 0.60
2 0.15 0.033 −3.3e−4 0.022 −4.0e−3 −5.7e−4 2.2e−4
4 0.095 0.024 −2.3e−4 0.015 −2.8e−3 −4.0e−4 1.5e−4

4f 0 0.72 0.088 −1.0e−3 0.050 −6.0e−3 −8.9e−4 2.6e−4 0.10
2 0.32 0.055 −6.4e−4 0.026 −3.5e−3 −5.1e−4 1.5e−4
4 0.20 0.037 −4.0e−4 0.016 −2.3e−3 −3.3e−4 9.7e−5
6 0.14 0.027 −2.9e−4 0.012 −1.7e−3 −2.4e−4 7.1e−5

5f 0 0.51 0.048 −4.0e−4 0.040 −3.9e−3 −7.4e−4 1.6e−4 0.16
2 0.24 0.031 −3.4e−4 0.022 −2.5e−3 −4.4e−4 1.1e−4
4 0.15 0.022 −2.4e−4 0.015 −1.7e−3 −3.1e−4 7.3e−5
6 0.11 0.017 −1.8e−4 0.011 −1.3e−3 −2.3e−4 5.5e−5
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5.4. The Hubbard Uavg and Hund’s exchange Javg

In general, a Coulomb matrix element (4.9)

Üαβγδ = Uαβγδ − Uαβδγ

involves four orbital indices. The most important ones are the two-index (m1,m2) terms
within a shell (n, l) (of the same spin) [41, 42, 43, 44, 45]:

Üm1m2 = Um1m2 − Jm1m2 (5.19)

where Um1m2 and Jm1m2 are known as the direct and exchange Coulomb integrals, respec-
tively. They are, (the form of the two-electron integrals is given in (1.18))

Um1m2 = (m1m2|
1

|r1 − r2|
|m2m1) (5.20)

Jm1m2 = (m1m2|
1

|r1 − r2|
|m1m2) (5.21)

In practical calculations, it is useful to introduce the averaged quantities, where the
angular indices m1 and m2 are averaged. For a given shell, there are (2l + 1)2 elements
of Üm1m2 . But all the diagonal elements are zeros (since Umm − Jmm = 0). Excluding the
diagonals, there are 2l(2l + 1) elements, whose average is,

Üavg =
1

2l(2l + 1)

∑
m1m2

Üm1m2 =
1

2l(2l + 1)

∑
m1m2

(Um1m2 − Jm1m2) (5.22)

Similar to Eqn. (5.19), we also separate Üavg into two terms:

Üavg ≡ Uavg − Javg (5.23)

which are known as the Hubbard Uavg and Hund’s exchange Javg, respectively. The
Hubbard Uavg is defined as: [41, 42, 44, 45]

Uavg ≡
1

(2l + 1)2

∑
m1m2

Um1m2 (5.24)

There is no more degrees of freedom to define Hund’s exchange Javg. It just follows from
(5.23) and (5.24): [41, 42, 44, 45]

Javg = Uavg − Üavg (5.25)

More explicitly, we can re-write Javg as

Javg =
1

2l(2l + 1)

∑
m1m2

Jm1m2 −
1

2l
Uavg (5.26)
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Explicitly expressing Um1m2 as (4.12) in terms of the Slater-Condon parameters F (k) and
the Gaunt coefficients, plus some properties of Gaunt coefficients, we can show that Uavg

is just F (0):

Uavg =
1

(2l + 1)2

2l∑
k=0

F (k) 4π

2k + 1

∑
m1m2

k∑
µ=−k

〈lm1|Ykµ |lm1〉 〈lm2|Ykµ |lm2〉

=
1

(2l + 1)2

2l∑
k=0

F (k) 4π

2k + 1

(∑
m

〈lm|Yk0 |lm〉
)2

=
1

(2l + 1)2

2l∑
k=0

F (k) 4π

2k + 1

(
(2l + 1)2

4π
δk0

)
= F (0) (5.27)

Similarly, we can show that Javg are linear combinations of F (k):

Javg =
1

2l(2l + 1)

2l∑
k=0

F (k) 4π

2k + 1

∑
m1m2

k∑
µ=−k

〈lm1|Ykµ |lm2〉 〈lm2|Ykµ |lm1〉 −
1

2l
F (0)

=
1

2l(2l + 1)

2l∑
k=0

F (k) 4π

2k + 1

∑
m1m2

〈lm1|Yk,m1−m2 |lm2〉2 −
1

2l
F (0)

=
1

2l(2l + 1)

2l∑
k=0

F (k) 4π

2k + 1

(
(2l + 1)

√
2k + 1

4π
〈l0|Yk0 |l0〉

)
− 1

2l
F (0)

=
1

2l

2l∑
k=0

F (k)

√
4π

2k + 1
〈l0|Yk0 |l0〉 −

1

2l
F (0) (5.28)

In (5.28), the F (0) term vanishes, because 〈l0|Y00 |l0〉 = Y00 〈l0 | l0〉 = Y00 = 1/
√

4π. The
final results reduce to linear combinations of F (2), F (4), · · · , F (2l) with Gaunt coefficients
of the form 〈l0|Yk0 |l0〉. Inserting the analytical values of 〈l0|Yk0 |l0〉 (see Chapter 7), we
summarize the results in Table 5.5.

Table 5.5.: Hubbard Uavg and Hund’s exchange Javg for s-, p-, d-, and f -shells.

s-shell Uavg = F (0) Javg = 0

p-shell Uavg = F (0) Javg =
1

5
F (2)

d-shell Uavg = F (0) Javg =
1

14
F (2) +

1

14
F (4)

f -shell Uavg = F (0) Javg =
2

45
F (2) +

1

33
F (4) +

50

1287
F (6)
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5.4. The Hubbard Uavg and Hund’s exchange Javg

In practical calculations, it is often assumed that the ratios among F (2), F (4), and F (6)

are constants [41, 42, 43, 46, 44, 45]. This assumption reduces the number of parameters
in the calculations. Indeed, the parameters with different k should not be considered
as independent variables. The physical picture is that when the radial wave functions
expand or shrink, the values of the corresponding parameters should decrease or increase
together. Empirically, for d-ions, the ratio F (4)/F (2) is approximated to be 5/8 = 0.625
[41, 42, 43, 46, 44]. For f -ions, the ratios F (4)/F (2) and F (6)/F (2) are estimated from
the hydrogen-like 4f radial wave functions [41, 46], which are 451/675 and 1001/2025,
respectively (see Appendix A).

It can be seen that the ratios are sometimes chosen with little guidance. We believe that
it is valuable to study the parameters over different ions and provide simple but more
reliable ratios according to the LDA calculations. The results are plotted in Fig. 5.6.
For a fixed oxidation state, the ratios are found to a high degree constants within each
block; For the varying oxidation states, the ratios change within 10%. To a very good
approximation, one can regard the ratios within each block as constants. For each block,
among different oxidation states, we estimate a simple fraction for the average ratio. The
estimated ratios are plotted in Fig. 5.6 in purple lines and listed in Table 5.6. Analytic
hydrogen-like results are also plotted in dashed black lines as references. One can observe
that the realistic ratios are slightly smaller than the hydrogen-like ratios.

Figure 5.6.: Slater-Condon parameter ratios F (4)/F (2) and F (6)/F (2) for calculated d and f
open-shells. The ratios are generated from the LDA data in Fig. 5.3. Simple
fraction approximations around the averages for each block are provided.
Hydrogen-like ratios are plotted in dashed black lines.
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5. Trends of many-body effects in atomic open-shells

Table 5.6.: Simple fraction approximations of Slater-Condon parameter ratios F (4)/F (2)

and F (6)/F (2) for calculated d and f open-shells.
Orbital F (4)/F (2) F (6)/F (2)

3d 5/8 —
4d 23/35 —
5d 2/3 —
6d 27/40 —
4f 12/19 5/11
5f 33/50 19/39

5.5. Trends of spin-orbit parameters

“The spin-orbit parameter Ξnl to HSO” is as “the Slater-Condon parameter F
(k)
nl to HU”.

They are both the radial components of the corresponding matrix elements (4.13) and
(4.12), respectively. The spin-orbit parameters are directly related to atomic spectra
measurements, in the sense that the spin-orbit term energies can be directly expressed
as Ξnl multiplied by constants. The task in this section is to investigate the periodic
trends of the spin-orbit parameters of atomic open-shells. For open-shell systems with
shell (n, l), we integrate (5.2),

Ξnl =

∫ ∞
0

dr |unl(r)|2ξ(r) (5.29)

where, [21, 25]

ξ(r) =
1

2c2r

dV

dr
(5.30)

The speed of light is c ≈ 137.036 a0/t0 in atomic units; and V (r) is the mean-field potential
in the one-electron picture.

Being a relativistic effect, the spin-orbit parameter contains a factor of 1/c2, which im-
plies that the spin-orbit interaction is normally weak. On the other hand, the spin-orbit
parameter has a potential dependence (in contrast to the Slater-Condon parameter, which
is only wave function dependent). If the potential has a large gradient (a steep potential),
the spin-orbit interaction can be strong, which is normally the case for heavy elements.

Consider hydrogen and hydrogen-like wave functions and potentials, where,

ξZ(r) =
Z

2c2r3
(5.31)

Now, suppose

ΞH =
1

2c2

∫ ∞
0

dr
|uH(r)|2
r3

(5.32)

is the spin-orbit parameter for hydrogen wave functions and potential. From the rescaling
relation (3.11), we can see that,

ΞZ =
Z

2c2

∫ ∞
0

dr
|uZ(r)|2
r3

=
Z

2c2

∫ ∞
0

dr
|Z 1

2uH(Zr)|2
r3

=
Z4

2c2

∫ ∞
0

dρ
|uH(ρ)|2
ρ3

= Z4ΞH

(5.33)

106



5.5. Trends of spin-orbit parameters

Recall that F
(k)
Z of the hydrogen-like systems increases linearly with Z, as shown in (5.12).

Now, the spin-orbit parameter increases with Z to the power of 4, dramatic! Certainly,
for realistic atoms, due to the screening effect, the scaling is less than the 4th power. But
the strong Z-dependence can be still observed in the calculated results.

Another important aspect of the integral (5.29) is that it diverges for s-orbitals. For
an atomic system, around the nucleus, we can approximately consider the mean-field
potential as the pure nuclear potential. Thus ξ(r) ∝ 1/r3 as in (5.31). However, for s
wave functions, we know that us(r) ∝ r when r → 0, as given in (3.5). As a result,
around 0, (5.29) integrates over |us(r)|2ξ(r) ∝ 1/r , which diverges (Ξs → ∞). But this
doesn’t mean that the spin-orbit interaction for s-orbitals is infinitely strong. Because on
the other hand, the angular parts in (4.14) and (4.17) for s-orbitals are zeros. On physical
grounds, there is no spin-orbit coupling when l = 0 (spin it there, but no orbit!). The
spin-orbit parameters for s-shells are not well defined.

The routine for evaluating Ξnl is shown in Algorithm 5.2. It might be interesting to realize
that the integral involves dr and the derivative involves 1/dr. As a result, on either a
uniform grid or a logarithmic grid, the dr or dx is canceled, thus not required as an input
in the routine.

Algorithm 5.2: Compute the spin-orbit parameter Ξnl

1 import numpy as np

2 import scipy.integrate as sp

3
4 # Spin -orbit parameter

5 def Xi(u, V, r):

6 return sp.simps(u**2*np.gradient(V)/(2*137.036**2*r))

Again, we are in a position to collect the SCF orbitals over the entire periodic table,
and compute the corresponding spin-orbit parameters. Similar to the study of the Slater-
Condon parameters, we compute the spin-orbit parameters for all elements with their
corresponding oxidation states for all Z ≤ 118 (s-shells excluded). The results are plotted
in Fig. 5.7.

Table 3.4 in Reference [25] provides spin-orbit parameters for a few atoms obtained from
experimental data. Fig. 5.8 compares the spin-orbit parameters between the LDA calcula-
tions and the experimental results. We can see that both the values and the trends agree
with each other to a high quality. For heavier elements, the reference data tend to have
greater discrepancy to the calculated results. It should be pointed out that, the spin-orbit
parameters from the experiments are obtained by using the LS-coupling scheme, which
estimates the spin-orbit splitting in a perturbative approach. However, for heavy atoms,
the energy gaps are effects of a mixture of both Coulomb and spin-orbit interactions. If
one assumes that a certain energy gap is caused only by spin-orbit interaction, then the
spin-orbit parameters will be over-estimated.

Comparing the Slater-Condon parameters in Fig. 5.3 with the spin-orbit parameters in
Fig. 5.7, we see two main differences:

1. The F (k)’s are of the order of 0.1 – 1 Hartree. On the other hand, the Ξ’s are of the
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5. Trends of many-body effects in atomic open-shells

Figure 5.7.: Spin-orbit parameters calculated from LDA atomic open-shell orbitals for all
elements with p, d, and f open-shells, with atomic number Z ≤ 118 and their
ions obtained by removing electrons from the open and outer shells. The Auf-
bau principle with Madelung’s rule is adopted for electronic configurations.
Colors from dark blue to dark red represent oxidation states: dark blue –
neutral; dark red – highly ionized. (Number of data points: 692)

Figure 5.8.: Comparison of the spin-orbit parameters between experimental data and the
LDA calculation results. Reference data obtained from Table 3.4 in [25].

order of 0.01 Hartree for light elements, and 0.1 Hartree for heavy elements.

2. Globally, the F (k)’s do not have a strong Z-dependence. For a given k, the values
are within the same order of magnitude over the entire periodic table. On the other
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5.6. Trends of the Coulomb and spin-orbit interaction

hand, the Ξ’s show a strong Z-dependence, that the value increases dramatically
for large Z.

Block-wise, the trend of the spin-orbit parameters are similar to the Slater-Condon pa-
rameters: For a given block, Ξ increases smoothly with increasing atomic number; for
a given atom, Ξ increases smoothly with increasing oxidation level. Due to the similar
block-wise trends, we perform the same fitting as in (5.18):

Ξ(Nauf , qeff) = (α0 + α1qeff + α2q
2
eff) + (β0 + β1qeff)Nauf + (γ0 + γ1qeff)N2

auf (5.34)

where the fitting parameters are given in Table 5.7. By fitting the trends, one can estimate
the parameters of systems with more arbitrary electronic configurations.

Table 5.7.: Fitting parameters for calculated open-shell spin-orbit parameters.

Shell α0 α1 α2 β0 β1 γ0 γ1 λ

2p 1.3e−4 2.1e−4 1.8e−5 −1.3e−4 −1.2e−4 8.4e−5 2.6e−5 —
3p 2.6e−4 2.6e−4 1.6e−5 5.9e−5 −3.8e−5 1.0e−4 1.5e−5 —
4p 1.6e−3 1.3e−3 5.2e−5 1.1e−3 2.0e−5 2.0e−4 1.4e−5 —
5p 4.3e−3 2.8e−3 8.0e−5 2.6e−3 −1.1e−5 2.3e−4 1.7e−5 —
6p 1.3e−2 7.6e−3 1.7e−4 6.8e−3 −1.7e−4 3.4e−4 3.3e−5 —
7p 2.5e−2 1.3e−2 2.6e−4 1.2e−2 −4.5e−4 3.8e−4 5.2e−5 —

3d 3.2e−4 1.5e−4 1.8e−5 1.0e−4 −1.3e−5 3.8e−5 3.9e−6 0.33
4d 9.0e−4 3.7e−4 3.0e−5 4.3e−4 −1.0e−5 5.1e−5 3.4e−6 0.53
5d 4.0e−3 1.4e−3 7.8e−5 1.5e−3 −3.6e−5 8.3e−5 4.7e−6 0.60
6d 9.6e−3 2.7e−3 1.1e−4 3.0e−3 −6.9e−5 9.4e−5 5.6e−6 0.59

4f 2.3e−3 5.3e−4 1.1e−5 4.9e−4 −8.4e−6 2.9e−5 2.1e−6 0.10
5f 5.0e−3 1.0e−3 1.4e−5 1.2e−3 −1.7e−5 3.5e−5 2.6e−6 0.16

5.6. Trends of the Coulomb and spin-orbit interaction

Consider a lead atom 82Pb with 6p2 open-shell configuration. From the LDA calculations,
one obtains the parameters (in Hartree):

F (0) = 0.27; F (2) = 0.14; Ξ = 0.028

Now, the question is: “Which interaction (Coulomb or spin-orbit) is relatively more im-
portant, in the sense that which coupling scheme (LS or jj) gives a better estimation for
the energy spectra?”

The values of the parameters can misdirect us to believe that the Coulomb interaction
is relatively more important. Because, apparently, the Slater-Condon parameters are one
order of magnitude greater than the spin-orbit parameter. The suggestion is that the
LS-coupling scheme is a better approximation scheme for the system, which is, however,
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5. Trends of many-body effects in atomic open-shells

incorrect. Assessing the relative importance of Coulomb and spin-orbit interactions re-
quires comparing the energy gaps among the spectra, rather than simply comparing the
radial components of the matrix elements.

A quantitative and systematic estimation of the spectral gaps is the spectral variance.
To compute the variance, a straightforward approach is to calculate the variance directly
from the eigen-energies. This approach requires first diagonalizing the many-body Hamil-
tonians. In the next chapter, we will discuss a more powerful approach to compute the
moments of general many-body Hamiltonians analytically without diagonalization. For
the p2 system, we know the eigen-energies, and hence the energy variances:

HU HSO

3P (9-fold) F (0) − 1

5
F (2)

(
3
2
, 3

2

)
(6-fold) Ξ

1D (5-fold) F (0) +
1

25
F (2)

(
3
2
, 1

2

)
(8-fold) −1

2
Ξ

1S (1-fold) F (0) +
2

5
F (2)

(
1
2
, 1

2

)
(1-fold) −2Ξ

Var =
18

625
(F (2))2 Var =

4

5
Ξ2

For the specific 6p2 open-shell of 82Pb, the values are (in Hartree2)

Var(HU) = 0.00056 Var(HSO) = 0.00063

It turns out that the spectral variances are of the same order of magnitude. In this
particular case, the jj-coupling scheme is marginally preferred than the LS-coupling
scheme. But neither of the two are good approximation schemes, as the two interactions
are of the same order of magnitude.

As an illustration, we compare the open-shell energy spectra for 6C, 14Si, 32Ge, 50Sn,

82Pb, and 114Fl. On the periodic table, they are in the same column (group 14) with
p2 open-shell configuration. The spectra are sketched in Fig. 5.9. In each diagram, LS-
coupling results are shown on the left, and jj-coupling results are shown on the right.
Referring to the intermediate-coupling results (middle column), we find that for 6C, 14Si,

32Ge, and 50Sn, the LS-coupling scheme is a suitable perturbative scheme, while on the
other hand, the jj-coupling scheme does not produce reasonable results. For 82Pb, both
LS-coupling and jj-coupling give similar estimations, as we have discussed. To see a
spin-orbit dominated case, we move to the super heavy artificial element 114Fl, where the
jj-coupling scheme becomes the preferred perturbative scheme.

Beyond p2, we study the trends of the spectral variances of the open-shell systems over
the entire periodic table for all atoms with Z ≤ 118. The explicit formulas for the
spectral variances of different open-shell systems are listed in Table B.5. The final results
are shown in Fig. 5.10. For open-shells with 1-electron or 1-hole, there is no Coulomb
splitting but spin-orbit splitting is present. The spectral variances tend to be large when
the open-shell is half-filled. In general, the Coulomb interaction is dominating until very
heavy elements with Z > 80.
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(b) Si (Z = 14)
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(c) Ge (Z = 32)
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(d) Sn (Z = 50)
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(e) Pb (Z = 82)
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Figure 5.9.: Comparison between LS-coupling scheme and jj-coupling scheme for atoms

6C, 14Si, 32Ge, 50Sn, 82Pb, and 114Fl, with p2 open-shell configuration. In each
diagram: Left three columns: LS-coupling scheme; Right three columns: jj-
coupling scheme; Middle column: Intermediate-coupling scheme.
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5. Trends of many-body effects in atomic open-shells

Figure 5.10.: Spectral variances of Coulomb and spin-orbit Hamiltonians of atomic open-
shells for all atoms with atomic number Z ≤ 118. The Aufbau principle
with Madelung’s rule is adopted for electronic configurations. For open-
shells with 1-electron or 1-hole, there is no Coulomb splitting but spin-orbit
splitting is present. The spectral variances tend to be large when the open-
shell is half-filled. In general, the Coulomb interaction is dominating until
very heavy elements with Z > 80.
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6. Moments of many-electron
Hamiltonians

6.1. Spectral moments

In the final part of Chapter 5, we introduced a problem of estimating the gaps of a given
energy spectrum. The gaps are estimated by computing the spectral variances. If we have
the complete set of the eigen-energies, we can easily compute the mean, the variance, and,
in general, the n-th moment of the spectrum:

〈En〉 =
1

dimH

dimH∑
i=1

En
i (6.1)

Obviously, getting the eigen-energies of a many-electron Hamiltonian in the first place is
the ultimate difficult task. So, we ask,

Can we evaluate 〈En〉 without having the eigen-energies?

Yes. The key is to realize that the trace of a Hamiltonian is independent of basis trans-
formations. Suppose we have a matrix representation H in a many-electron basis. In
general, the many-electron basis is not an eigen-basis, so H is not diagonal. But since the
trace is invariant under basis transformations, there is no need to go to the eigen-basis:

〈En〉 =
1

dimH

Tr(Hn) (6.2)

So, given a matrix representation, take the matrix to the power of n, average the diago-
nal elements, we get the n-th moment, and there is no matrix diagonalization involved.
However, one does not gain much here as matrix multiplications and diagonalizations are
of the same order of computational complexity (O(dim3

H)). The fundamental challenge is
that the Hilbert space dimension that we are working with is in general enormous (recall
Eqn. (1.11) and Table 1.1).

Consider general one- and two-body Hamiltonians,

H1 =
∑
αβ

hαβ c
†
αcβ and H2 =

∑
α<β
γ<δ

v̈αβγδ c
†
αc
†
βcγcδ (6.3)

In this chapter, we ask an ambitious question,

Can we evaluate 〈En〉 without working with the many-electron basis?
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6. Moments of many-electron Hamiltonians

6.2. Moments of one-body Hamiltonians

We start from investigating the one-body Hamiltonian,

H =
∑
αβ

hαβc
†
αcβ (6.4)

In fact, if a system is described purely by a one-body Hamiltonian, the system is non-
interacting. The many-electron problems reduce to one-electron problems. There is no
need to work with a many-electron basis. However, we insist to discuss the moments of
one-body Hamiltonians from a many-electron perspective. Hopefully it will give us an
algebraic insight for later handling the two-body Hamiltonians.

6.2.1. The first moment

In general, in a many-electron basis, a matrix element of (6.4) is

〈i|H |j〉 =
∑
αβ

hαβ 〈i| c†αcβ |j〉 (6.5)

where 〈i| and |j〉 are the many-electron basis states.

First, we consider the first moment of the spectrum (which is the spectral mean). To get
the first moment, we average over all the diagonal elements:

〈E〉 =
1

dimH

dimH∑
i=1

∑
αβ

hαβ 〈i| c†αcβ |i〉 (6.6)

Obviously,

〈i| c†αcβ |i〉 =

{
1 if (α = β) and (α, β ∈ i)
0 otherwise

(6.7)

Hence, (6.6) reduces to

〈E〉 =
1

dimH

dimH∑
i=1

∑
α∈i

hαα (6.8)

where (α ∈ i) denotes that α is an occupied orbital of basis state i. Now, within the
complete set of basis states (dimH = Norb-choose-Ne), how many basis states fulfill the
condition that the orbital α is occupied? This is a conditional combinatorics problem: we
“lock” one electron and one orbital to count the rest. There are (Norb−1)-choose-(Ne−1)
possibilities. Thus, the sum in (6.8) simplifies to,

dimH∑
i=1

∑
α∈i

=

(
Norb−1

Ne−1

)Norb∑
α=1

(6.9)
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6.2. Moments of one-body Hamiltonians

The summation over the Hilbert space dimension disappears! Eqn. (6.9) is the key of
collapsing a Hilbert space summation to a one-electron space summation. Further, we
use a more compact notation,

Norb∑
α=1

hαα = Tr(h) (6.10)

where h is the matrix representation of the Hamiltonian in the one-electron basis. Finally,
the first moment simplifies to,

〈E〉 =
1

dimH

(
Norb−1

Ne−1

)
Tr(h) (6.11)

The original “H-problem” (dimH = Norb-choose-Ne) reduces to an “h-problem” (dimh =
Norb). If we denote

〈εn〉 =
1

dimh

Tr(hn) (6.12)

Eqn. (6.11) can be equivalently written as,

〈E〉 = Ne 〈ε〉 (6.13)

The mean eigen-energy of the many-electron system is the mean eigen-energy of the one-
electron system times the number of electrons.

6.2.2. The second moment

Next, we consider the Hamiltonian squared: (note H = H† is hermitian)

H2 =
∑
αβγδ

hαβhγδc
†
αcβc

†
γcδ (6.14)

For the second moment, we trace the squared operator,

〈
E2
〉

=
1

dimH

dimH∑
i=1

∑
αβγδ

hαβhγδ 〈i| c†αcβc†γcδ |i〉 (6.15)

To work with the term 〈i| c†αcβc†γcδ |i〉, we re-order the operators:

〈i| c†αcβc†γcδ |i〉 = 〈i| c†α(δβγ − c†γcβ)cδ |i〉 = 〈i| c†αcδ |i〉 δβγ − 〈i| c†αc†γcβcδ |i〉 (6.16)

Now,

〈i| c†αcδ |i〉 =

{
1 if (α = δ) and (α, δ ∈ i)
0 otherwise

(6.17)

〈i| c†αc†γcβcδ |i〉 =


1 if (α = δ) and (β = γ) and (α, β, γ, δ ∈ i)
−1 if (α = β) and (γ = δ) and (α, β, γ, δ ∈ i)

0 otherwise

(6.18)
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6. Moments of many-electron Hamiltonians

In a compact notation, we write,

〈i| c†αcβc†γcδ |i〉 = δαδδβγ∆(αδ∈i)− (δαδδβγ − δαβδγδ)∆(αβγδ∈i) (6.19)

where ∆(condition) returns 1 if the condition is true, otherwise 0.

Substitute (6.19) back to (6.15), we obtain,

〈
E2
〉

=
1

dimH

dimH∑
i=1

(∑
α∈i

∑
β

hαβhβα −
∑
αβ∈i

hαβhβα +
∑
αγ∈i

hααhγγ

)
(6.20)

Using the conditional combinatorics trick,

〈
E2
〉

=
1

dimH

[(
Norb−1

Ne−1

)∑
αβ

hαβhβα −
(
Norb−2

Ne−2

)∑
αβ

hαβhβα +

(
Norb−2

Ne−2

)∑
αγ

hααhγγ

]

Combine the first two terms and collapse the sums into traces, we obtain the second
moment in terms of the one-electron matrix h:

〈
E2
〉

=
1

dimH

[(
Norb−2

Ne−1

)
Tr(h2) +

(
Norb−2

Ne−2

)
Tr2(h)

]
(6.21)

Equivalently, 〈
E2
〉

=
Ne(Norb−Ne)

Norb−1

〈
ε2
〉

+
Ne(Ne−1)Norb

Norb−1
〈ε〉2 (6.22)

From (6.13) and (6.22), we can easily derive the many-electron spectral variance of a
one-body Hamiltonian:

Var(E) =
〈
E2
〉
− 〈E〉2 =

Ne(Norb−Ne)

Norb−1

[ 〈
ε2
〉
− 〈ε〉2

]
(6.23)

Consider a specific example. Suppose we have a many-electron atomic shell system with
the spin-orbit Hamiltonian. For convenience, we use the jj-basis as the one-electron basis,
since the one-electron matrix elements (4.53) are diagonal:

hαβ =
1

2
Ξnl

[
jα(jα + 1)− l(l + 1)− 3

4

]
δαβ (6.24)

Given an atomic shell in the jj-basis (e.g. Fig. 4.1b), there are (2l + 2) orbitals with
j = l + 1

2
, and 2l orbitals with j = l − 1

2
. It turns out that the trace of the one-electron

spin-orbit matrix elements is zero,

Tr(h) =
1

2
Ξnl(2l + 2)[(l + 1

2
)(l + 3

2
)− l(l + 1)− 3

4
]

+
1

2
Ξnl (2l) [(l − 1

2
)(l + 1

2
)− l(l + 1)− 3

4
] = 0 (6.25)
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6.2. Moments of one-body Hamiltonians

Since (6.24) is diagonal, h2 is simply a diagonal matrix squared. Therefore,

Tr(h2) =
1

4
Ξ2
nl(2l + 2)[(l + 1

2
)(l + 3

2
)− l(l + 1)− 3

4
]2

+
1

4
Ξ2
nl (2l) [(l − 1

2
)(l + 1

2
)− l(l + 1)− 3

4
]2

=
1

4
Ξ2
nl(4l + 2)l(l + 1) (6.26)

For an atomic shell, dimh = Norb = 4l + 2. Hence,

〈ε〉 = 0 and
〈
ε2
〉

=
l(l + 1)

4
Ξ2
nl (6.27)

Therefore, the spectral variance of the spin-orbit Hamiltonian of a many-electron atomic
shell system reads,

Var(E) =
Ne(Norb−Ne)

Norb−1

l(l + 1)

4
Ξ2
nl (6.28)

6.2.3. The third moment

From the experience of working with the 2nd moment, we see that a crucial step is to
evaluate the diagonal elements of a “properly ordered” (all creators left, all annihilators
right) n-body operator (called the density matrix ). In general, the diagonal elements of
a density matrix can be expressed as a determinant of deltas [47]

〈i| c†α1
c†α2
· · · c†αncβn · · · cβ2cβ1 |i〉 =

∣∣∣∣∣∣∣∣∣
δα1β1 δα1β2 · · · δα1βn

δα2β1 δα2β2 · · · δα2βn
...

...
. . .

...
δαnβ1 δαnβ2 · · · δαnβn

∣∣∣∣∣∣∣∣∣∆(α1· · ·αnβn· · ·β1∈i) (6.29)

Now, we consider the Hamiltonian cubed:

H3 =
∑
αβγδεζ

hαβhγδhεζc
†
αcβc

†
γcδc

†
εcζ (6.30)

Here, for a better readability (and easier typing. . . ), we re-write the above equation as,

H3 =
∑

ABCDEF

[AB][CD][EF ]A†BC†DE†F (6.31)

To evaluate 〈E3〉, we re-order the operators:

A†BC†DE†F = A†(δBC − C†B)(δDE − E†D)F

= A†(δBCδDE − δBCE†D − C†BδDE + C†BE†D)F

= A†(δBCδDE − δBCE†D − C†BδDE + C†(δBE − E†B)D)F

= A†FδBCδDE − A†E†DFδBC − A†C†BFδDE + A†C†DFδBE − A†C†E†BDF
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Now, we trace for the 3rd moment,

〈
E3
〉

=
1

dimH

dimH∑
i=1

∑
ABCDEF

[AB][CD][EF ]
(

〈i|A†F |i〉 δBCδDE
− 〈i|A†E†DF |i〉 δBC
− 〈i|A†C†BF |i〉 δDE
+ 〈i|A†C†DF |i〉 δBE
− 〈i|A†C†E†BDF |i〉)

(6.32)

Using (6.29), we can express each diagonal density matrix element as determinant of
deltas. This won’t look very pleasant, but,

〈
E3
〉

=
1

dimH

dimH∑
i=1

∑
ABCDEF

[AB][CD][EF ]
(

δAF∆(AF∈i)δBCδDE
− (δAF δDE − δADδEF )∆(ADEF∈i)δBC
− (δAF δBC − δABδCF )∆(ABCF∈i)δDE
+ (δAF δDC − δADδCF )∆(ACDF∈i)δBE
− (δAF δCDδBE + δADδBCδEF + δABδCF δDE

− δABδCDδEF − δADδCF δBE − δAF δBCδDE)∆(ABCDEF∈i))
=

1

dimH

dimH∑
i=1

(
∑
A∈i

∑
BD

[AB][BD][DA]

−
∑
AD∈i

∑
B

[AB][BD][DA] +
∑
AE∈i

∑
B

[AB][BA][EE]

−
∑
AB∈i

∑
D

[AB][BD][DA] +
∑
AC∈i

∑
D

[AA][CD][DC]

+
∑
AC∈i

∑
B

[AB][CC][BA]−
∑
AC∈i

∑
B

[AB][CA][BC]

−
∑
ABC∈i

[AB][CC][BA]−
∑
ABE∈i

[AB][BA][EE]−
∑

ACD∈i

[AA][CD][DC]

+
∑
ACE∈i

[AA][CC][EE] +
∑
ABC∈i

[AB][CA][BC] +
∑

ACD∈i

[AB][BD][DA])
(6.33)
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Using the conditional combinatorics trick and expressing the sums as traces,〈
E3
〉

=
1

dimH

[
(
Norb−1

Ne−1

)
Tr(h3)

−
(
Norb−2

Ne−2

)
Tr(h3) +

(
Norb−2

Ne−2

)
Tr(h2)Tr(h)

−
(
Norb−2

Ne−2

)
Tr(h3) +

(
Norb−2

Ne−2

)
Tr(h2)Tr(h)

+

(
Norb−2

Ne−2

)
Tr(h2)Tr(h)−

(
Norb−2

Ne−2

)
Tr(h3)

−
(
Norb−3

Ne−3

)
Tr(h2)Tr(h)−

(
Norb−3

Ne−3

)
Tr(h2)Tr(h)−

(
Norb−3

Ne−3

)
Tr(h2)Tr(h)

+

(
Norb−3

Ne−3

)
Tr3(h) +

(
Norb−3

Ne−3

)
Tr(h3) +

(
Norb−3

Ne−3

)
Tr(h3)]

(6.34)

which reduces to,

〈
E3
〉

=
1

dimH

[[(Norb−3

Ne−1

)
−
(
Norb−3

Ne−2

)]
Tr(h3) + 3

(
Norb−3

Ne−2

)
Tr(h2)Tr(h) +

(
Norb−3

Ne−3

)
Tr3(h)

]
(6.35)

Algorithm 6.1 gives example codes for computing the spectral moments 〈E1〉, 〈E2〉, and
〈E3〉 of a one-body Hamiltonian for a many-electron system. Note that the input argu-
ments of the functions are identical to the arguments of H1 in Algorithm 1.3.

Algorithm 6.1: Spectral moments 〈E1〉, 〈E2〉, and 〈E3〉 of a one-body Hamiltonian
(moment.py).

1 import numpy as np

2
3 # 1st moment of a one -body Hamiltonian

4 def H1m1(Norb , Ne , h):

5 T1 = np.trace(h)

6 return T1 * Ne/Norb

7
8 # 2nd moment of a one -body Hamiltonian

9 def H1m2(Norb , Ne , h):

10 T1 = np.trace(h )

11 T2 = np.trace(h@h)

12 return (T2*(Norb -Ne) + T1 **2*(Ne -1)) * Ne/Norb/(Norb -1)

13
14 # 3rd moment of a one -body Hamiltonian

15 def H1m3(Norb , Ne , h):

16 T1 = np.trace(h )

17 T2 = np.trace(h@h )

18 T3 = np.trace(h@h@h)

19 return (T3 * (Norb -Ne)*(Norb -2*Ne)

20 + T2*T1*3 * (Ne -1)*(Norb -Ne)

21 + T1**3 * (Ne -1)*(Ne -2)) * Ne/Norb/(Norb -1)/(Norb -2)
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6. Moments of many-electron Hamiltonians

To appreciate the powerfulness (and to confirm the correctness) of the moment formulas,
we run a test in Algorithm 6.2. The example problem size is Norb = 16 and Ne = 8.
We compute 〈E1〉, 〈E2〉, and 〈E3〉 of a one-body Hamiltonian with a randomly generated
one-electron symmetric matrix. The script in Algorithm 6.2 computes the moments using
both the efficient moment formulas and the expensive many-body approach. A test run
gives the following output:

Method 1: moment formulas

<E1> = 3.964548

<E2> = 36.860894

<E3> = 313.783669

Time elapsed: 0.000214 seconds

Method 2: full many-body calculation

<E1> = 3.964548

<E2> = 36.860894

<E3> = 313.783669

Time elapsed: 349.701372 seconds

Algorithm 6.2: Computing spectral moments 〈E1〉, 〈E2〉, and 〈E3〉 of a one-body Hamilto-
nian using the efficient moment formulas and the expensive many-electron
approach. The file hamiltonian.py refers to Algorithm 1.3.

1 from moment import H1m1 , H1m2 , H1m3

2 from hamiltonian import H1

3 import numpy as np

4 import time

5
6 # Problem size

7 (Norb , Ne) = (16, 8)

8
9 # Random symmetric matrix elements

10 def randh(Norb):

11 np.random.seed (0)

12 R = np.random.rand(Norb , Norb)

13 h = np.tril(R) + np.tril(R, -1).T

14 return h

15 h = randh(Norb)

16
17 # Efficient computation using the moment formulas

18 start = time.time()

19 E1 = H1m1(Norb , Ne, h)

20 E2 = H1m2(Norb , Ne, h)

21 E3 = H1m3(Norb , Ne, h)

22 end = time.time()

23 print(’Method 1: moment formulas ’)

24 print(’<E1 > = %f’ % E1)

25 print(’<E2 > = %f’ % E2)

26 print(’<E3 > = %f’ % E3)

27 print(’Time elapsed: %f seconds ’ % (end -start ))

28
29 # Expensive computation using the many -electron Hamiltonian

30 start = time.time()

31 H = H1(Norb , Ne , h)

32 E1 = np.trace(H )/len(H)

33 E2 = np.trace(H@H )/len(H)

34 E3 = np.trace(H@H@H )/len(H)

120



6.2. Moments of one-body Hamiltonians

35 end = time.time()

36 print(’Method 2: full many -body calculation ’)

37 print(’<E1 > = %f’ % E1)

38 print(’<E2 > = %f’ % E2)

39 print(’<E3 > = %f’ % E3)

40 print(’Time elapsed: %f seconds ’ % (end -start ))

6.2.4. The n-th moment

At this stage, we have described a systematic way to produce 〈En〉 (in terms of the traces
of h) for one-body Hamiltonians. In this part, we list the first few moments expressions
and summarize the general pattern.

For convenience, we make some simplifications in the notation:

Trn(hm)→ [m]n(
Norb−x
Ne−y

)
→
(
x

y

)

Omitting the prefactor 1/dimH, the first few moments are listed in Table 6.1.

In Table 6.1, the second and the third columns describe a partition problem. For instance,
the set {A,B,C} can be divided into sub-sets as:

[3]→ {{A,B,C}}
[2][1]→ {{A,B}, {C}}, {{A,C}, {B}}, {{B,C}, {A}}

[1][1][1]→ {{A}, {B}, {C}}

Thus 〈E3〉 have the terms: [3], 3 × [2][1], and [1]3. The sequence in the third column
follows the “Triangle of multinomial coefficients” (OEIS A080575) [48].

The last column with the combinatorial factors is a little more complicated. For each
moment, we collect the first term:

[1]
(

1
1

)
[2]

(
2
1

)
[3]

(
3
1

)
−
(

3
2

)
[4]

(
4
1

)
− 4
(

4
2

)
+
(

4
3

)
[5]

(
5
1

)
− 11

(
5
2

)
+ 11

(
5
3

)
−
(

5
4

)
[6]

(
6
1

)
− 26

(
6
2

)
+ 66

(
6
3

)
− 26

(
6
4

)
+
(

6
5

)
The table follows the “Triangle of Eulerian numbers” (OEIS A008292) [48] with alternat-
ing signs. Further, for product terms like [5][4], the corresponding binomial coefficients
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6. Moments of many-electron Hamiltonians

Table 6.1.: The first few moments of a one-body Hamiltonian.

moments traces partition factors combinatorial factors

〈E1〉 [1] 1
(

1
1

)
〈E2〉 [2] 1

(
2
1

)
[1]2 1

(
2
2

)
〈E3〉 [3] 1

(
3
1

)
−
(

3
2

)
[2][1] 3

(
3
2

)
[1]3 1

(
3
3

)
〈E4〉 [4] 1

(
4
1

)
− 4
(

4
2

)
+
(

4
3

)
[3][1] 4

(
4
2

)
−
(

4
3

)
[2]2 3

(
4
2

)
[2][1]2 6

(
4
3

)
[1]4 1

(
4
4

)
〈E5〉 [5] 1

(
5
1

)
− 11

(
5
2

)
+ 11

(
5
3

)
−
(

5
4

)
[4][1] 5

(
5
2

)
− 4
(

5
3

)
+
(

5
4

)
[3][2] 10

(
5
2

)
−
(

5
3

)
[3][1]2 10

(
5
3

)
−
(

5
4

)
[2]2[1] 15

(
5
3

)
[2][1]3 10

(
5
4

)
[1]5 1

(
5
5

)
〈E6〉 [6] 1

(
6
1

)
− 26

(
6
2

)
+ 66

(
6
3

)
− 26

(
6
4

)
+
(

6
5

)
[5][1] 6

(
6
2

)
− 11

(
6
3

)
+ 11

(
6
4

)
−
(

6
5

)
[4][2] 15

(
6
2

)
− 4
(

6
3

)
+
(

6
4

)
[4][1]2 15

(
6
3

)
− 4
(

6
4

)
+
(

6
5

)
[3]2 10

(
6
2

)
− 2
(

6
3

)
+
(

6
4

)
[3][2][1] 60

(
6
3

)
−
(

6
4

)
[3][1]3 20

(
6
4

)
−
(

6
5

)
[2]3 15

(
6
3

)
[2]2[1]2 45

(
6
4

)
[2][1]4 15

(
6
5

)
[1]6 1

(
6
6

)
can be constructed in the following way,

[5][4]
(

4
1

)
−4
(

4
2

) (
4
3

)(
5
1

) (
9
2

)
−4
(

9
3

) (
9
4

)
−11

(
5
2

)
−11

(
9
3

)
44
(

9
4

)
−11

(
9
5

)
11
(

5
3

)
11
(

9
4

)
−44

(
9
5

)
11
(

9
6

)
−
(

5
4

)
−
(

9
5

)
4
(

9
6

)
−
(

9
7

) ⇒
(

9
2

)
− 15

(
9
3

)
+ 56

(
9
4

)
− 56

(
9
5

)
+ 15

(
9
6

)
−
(

9
7

)

At this stage, we are able to compute any 〈En〉 in terms of the traces of h, for any
one-body Hamiltonian.
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6.3. Moments of two-body Hamiltonians

In this section, we consider the two-body Hamiltonian, which describes interacting sys-
tems:

H =
∑
α<β
γ<δ

v̈αβγδc
†
αc
†
βcγcδ (6.36)

The form of a two-body Hamiltonian is similar to a one-body Hamiltonian squared (6.14).
A major difference is in the form of the matrix elements: In (6.14), the matrix elements
are products of two one-electron matrix elements; In (6.36), the matrix elements are 4-
index tensor elements with additional restrictions. In this chapter, for convenience, we
re-write the two-body Hamiltonian in the following form:

H =
∑
aAbB

[aAbB]a†A†bB (6.37)

where (a < A) and (b < B) are implied.

Recall (1.22), we can re-order the tensor indices: [aAbB] = −[aABb]. On the other hand,
we can anti-commute the two annihilators: bB = −Bb. Equivalently, we can write (6.37)
as:

H =
∑
aABb

[aABb]a†A†Bb (6.38)

6.3.1. The first moment

First, we work out the first moment:

〈E〉 =
1

dimH

dimH∑
i=1

∑
aABb

[aABb] 〈i| a†A†Bb |i〉 (6.39)

The diagonal density matrix element yields,

〈i| a†A†Bb |i〉 = (δabδAB − δaBδAb)∆(aABb∈i) (6.40)

However, the term δaBδAb is “self-contradictory”: Because (a = B) implies (A > B) and
(A = b) implies (A < B), which are contradictory. Logically,

δaBδAb = 0 (6.41)

The first moment reduces to,

〈E〉 =
1

dimH

dimH∑
i=1

∑
aABb

[aABb]δabδAB∆(aABb∈i) =
1

dimH

dimH∑
i=1

∑
aA∈i

[aAAa] (6.42)

With the trick of the conditional combinatorics, we have,

〈E〉 =
1

dimH

(
Norb−2

Ne−2

)∑
aA

[aAAa] (6.43)
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The summation over the paired index can be expressed as the trace of the matrix repre-
sentation in a two-electron basis. Namely,∑

aA

[aAAa] = Tr(v̈) (6.44)

For instance, in a 3-orbital-basis system, the matrix representation in a two-electron basis
reads,

v̈ =

H c†1c
†
0 |0〉 c†2c

†
0 |0〉 c†2c

†
1 |0〉

〈0| c0c1 [0110] [0120] [0121]
〈0| c0c2 [0210] [0220] [0221]
〈0| c1c2 [1210] [1220] [1221]

(6.45)

Finally, the first moment of a two-body Hamiltonian:

〈E〉 =
1

dimH

(
Norb−2

Ne−2

)
Tr(v̈) (6.46)

The original “H-problem” (dimH = Norb-choose-Ne) reduces to a “v̈-problem” (dimv̈ =
Norb-choose-2). If we denote

〈εn〉 =
1

dimv̈

Tr(v̈n) (6.47)

Eqn. (6.46) can be equivalently written as,

〈E〉 =

(
Ne

2

)
〈ε〉 (6.48)

The mean eigen-energy of the many-electron system is the mean eigen-energy of the two-
electron system times the number of electron-pairs.

6.3.2. The second moment

Next, we consider the Hamiltonian squared:

H2 =
∑

aABbcCDd

[aABb][cCDd]a†A†Bbc†C†Dd (6.49)

Re-order the operators,

a†A†Bbc†C†Dd = a†A†B(δbc − c†b)C†Dd
= a†A†BC†Ddδbc − a†A†Bc†bC†Dd
= a†A†(δBC − C†B)Ddδbc − a†A†(δBc − c†B)(δbC − C†b)Dd
= a†A†DdδBCδbc − a†A†C†BDdδbc
− a†A†DdδBcδbC + a†A†C†bDdδBc + a†A†c†BDdδbC

− a†A†c†bDdδBC + a†A†c†C†BbDd
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Note that the term with δBcδbC vanishes because of contradiction.

Now, we trace for the second moment:

〈
E2
〉

=
1

dimH

dimH∑
i=1

∑
aABbcCDd

[aABb][cCDd]
(

〈i| a†A†Dd |i〉 δBCδbc
− 〈i| a†A†C†BDd |i〉 δbc + 〈i| a†A†C†bDd |i〉 δBc
+ 〈i| a†A†c†BDd |i〉 δbC − 〈i| a†A†c†bDd |i〉 δBC
+ 〈i| a†A†c†C†BbDd |i〉)

(6.50)

Expanding each diagonal density matrix element as determinant of deltas, we get,

〈
E2
〉

=
1

dimH

dimH∑
i=1

∑
aABbcCDd

[aABb][cCDd]
(

∣∣∣∣δad δaD
δAd δAD

∣∣∣∣∆(aADd∈i)δBCδbc

−

∣∣∣∣∣∣
δad δaD δaB
δAd δAD δAB
δCd δCD δCB

∣∣∣∣∣∣∆(aACBDd∈i)δbc +

∣∣∣∣∣∣
δad δaD δab
δAd δAD δAb
δCd δCD δCb

∣∣∣∣∣∣∆(aACbDd∈i)δBc

+

∣∣∣∣∣∣
δad δaD δaB
δAd δAD δAB
δcd δcD δcB

∣∣∣∣∣∣∆(aAcBDd∈i)δbC −

∣∣∣∣∣∣
δad δaD δab
δAd δAD δAb
δcd δcD δcb

∣∣∣∣∣∣∆(aAcbDd∈i)δBC

+

∣∣∣∣∣∣∣∣
δad δaD δab δaB
δAd δAD δAb δAB
δcd δcD δcb δcB
δCd δCD δCb δCB

∣∣∣∣∣∣∣∣∆(aAcCBbDd∈i)

)
(6.51)

Now, term-by-term! (in the following results, all the contradictory terms are dropped)

The first term:

∣∣∣∣δad δaD
δAd δAD

∣∣∣∣ δBCδbc = (δadδAD)δBCδbc
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6. Moments of many-electron Hamiltonians

The four 3-by-3 determinants:∣∣∣∣∣∣
δad δaD δaB
δAd δAD δAB
δCd δCD δCB

∣∣∣∣∣∣ δbc = (δadδADδCB + δaDδABδCd + δaBδAdδCD − δaBδADδCd − δadδABδCD)δbc∣∣∣∣∣∣
δad δaD δab
δAd δAD δAb
δCd δCD δCb

∣∣∣∣∣∣ δBc = (δabδAdδCD − δabδADδCd − δadδAbδCD)δBc∣∣∣∣∣∣
δad δaD δaB
δAd δAD δAB
δcd δcD δcB

∣∣∣∣∣∣ δbC = (δaDδABδcd − δaBδADδcd − δadδABδcD)δbC∣∣∣∣∣∣
δad δaD δab
δAd δAD δAb
δcd δcD δcb

∣∣∣∣∣∣ δBC = (δadδADδcb + δaDδAbδcd + δabδAdδcD − δabδADδcd − δadδAbδcD)δBC

The 4-by-4 determinant term:∣∣∣∣∣∣∣∣
δad δaD δab δaB
δAd δAD δAb δAB
δcd δcD δcb δcB
δCd δCD δCb δCB

∣∣∣∣∣∣∣∣
= δad

∣∣∣∣∣∣
δAD δAb δAB
δcD δcb δcB
δCD δCb δCB

∣∣∣∣∣∣− δaD
∣∣∣∣∣∣
δAd δAb δAB
δcd δcb δcB
δCd δCb δCB

∣∣∣∣∣∣+ δab

∣∣∣∣∣∣
δAd δAD δAB
δcd δcD δcB
δCd δCD δCB

∣∣∣∣∣∣− δaB
∣∣∣∣∣∣
δAd δAD δAb
δcd δcD δcb
δCd δCD δCb

∣∣∣∣∣∣
= δad(δADδcbδCB + δAbδcBδCD + δABδcDδCb − δABδcbδCD − δAbδcDδCB)

− δaD(δABδcdδCb − δABδcbδCd − δAbδcdδCB)

+ δab(δAdδcDδCB + δADδcBδCd + δABδcdδCD − δADδcdδCB − δAdδcBδCD)

− δaB(δADδcbδCd − δADδcdδCb − δAdδcbδCD)

One must pay attention when combining the elements’ indices (which have implicit con-
strains a < A, b < B, c < C, d < D) with the Kronecker deltas. For example,∑

aD

[aABb][cCDd]δaD =
∑
a

[aABb][cCad] with the constraint (a>d)

Originally, the indices a and d are independent. But, in the example above, it gets an
additional constraint because a replaces D and D > d. Such additional constrains are
crucial for merging the terms in the next step. Now, for convenience, we write,∑

aD

[aABb][cCDd]δaD =
∑
a

[aABb][cCa>d]

Now, we continue Eqn. (6.51) by combining the Kronecker deltas. Carefully collecting
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6.3. Moments of two-body Hamiltonians

the terms and using the symmetries (1.22), we obtain,

〈
E2
〉

=
1

dimH

dimH∑
i=1

(
∑
aA∈i

∑
Bb

[aABb][bBAa]−
∑
aAB∈i

∑
b

[aABb][bBAa]−
∑
aAb∈i

∑
B

[aABb][bBAa] +
∑

aABb∈i

[aABb][bBAa]

+
∑
aAC∈i

∑
c

(

+ [aAA>c][cCC>a] + [aAA>c][cCC<a] + [aAA<c][cCC>a]︸ ︷︷ ︸
=[aAAc][cCCa] note: [aAA<c][cCC<a]=0 because of contradiction

+ [Aaa>c][cCC>A] + [Aaa>c][cCC<A] + [Aaa<c][cCC>A] + [Aaa<c][cCC<A]︸ ︷︷ ︸
=[Aaac][cCCA]

)

+
∑
aAc∈i

∑
C

(

+ [aAA>C][Ccc>a] + [aAA>C][Ccc<a] + [aAA<C][Ccc>a] + [aAA<C][Ccc<a]︸ ︷︷ ︸
=[aAAC][Ccca]

+ [Aaa>C][Ccc<A] + [Aaa<C][Ccc>A] + [Aaa<C][Ccc<A]︸ ︷︷ ︸
=[AaaC][CccA] note: [Aaa>C][Ccc>A]=0 because of contradiction

)

+
∑

aAcC∈i

(

+ [aAA>c][cCC>a] + [aAA>c][cCC<a] + [aAA<c][cCC>a]︸ ︷︷ ︸
=[aAAc][cCCa]

+ [Aaa>c][cCC>A] + [Aaa>c][cCC<A] + [Aaa<c][cCC>A] + [Aaa<c][cCC<A]︸ ︷︷ ︸
=[Aaac][cCCA]

+ [aAA>C][Ccc>a] + [aAA>C][Ccc<a] + [aAA<C][Ccc>a] + [aAA<C][Ccc<a]︸ ︷︷ ︸
=[aAAC][Ccca]

+ [Aaa>C][Ccc<A] + [Aaa<C][Ccc>A] + [Aaa<C][Ccc<A]︸ ︷︷ ︸
=[AaaC][CccA]

)

+
∑

aAcC∈i

[aAAa][cCCc])
(6.52)
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Using the trick of the conditional combinatorics, we have,〈
E2
〉

=
1

dimH

(
[(Norb−2

Ne−2

)
−2

(
Norb−3

Ne−3

)
+

(
Norb−4

Ne−4

)] ∑
aABb

[aABb][bBAa]

+
[(Norb−3

Ne−3

)
−
(
Norb−4

Ne−4

)] ∑
aAcC

[aAAc][cCCa] + [aAAC][Ccca] + [Aaac][cCCA] + [AaaC][CccA]

+

(
Norb−4

Ne−4

) ∑
aAcC

[aAAa][cCCc])
=

1

dimH

(
(
Norb−4

Ne−2

) ∑
aABb

[aABb][bBAa]

+

(
Norb−4

Ne−3

) ∑
aAcC

[aAAc][cCCa] + [aAAC][Ccca] + [Aaac][cCCA] + [AaaC][CccA]

+

(
Norb−4

Ne−4

) ∑
aAcC

[aAAa][cCCc])
(6.53)

In a compact notation, we write,

〈
E2
〉

=
1

dimH

[(
Norb−4

Ne−2

)
Tr(v̈2) +

(
Norb−4

Ne−3

)
X +

(
Norb−4

Ne−4

)
Tr2(v̈)

]
(6.54)

where,

X =
∑
α<β
γ<δ

v̈αββγ v̈γδδα + v̈αββδv̈δγγα + v̈βααγ v̈γδδβ + v̈βααδv̈δγγβ (6.55)

In fact, if we play a bit with the indices, the X-term can be re-written as,

X =
(∑
α<β
γ<δ

+
∑
α<β
γ>δ

+
∑
α>β
γ<δ

+
∑
α>β
γ>δ

)
v̈αββγ v̈γδδα =

∑
αβγδ

v̈αββγ v̈γδδα (6.56)

The matrix elements have a special form that the two middle indices are equal. The
physical picture is that during the pair interactions, one of the electron state remains
untouched. This is in some sense a one-body interaction. Indeed, since the two middle
indices are summed over independently, we introduce,

ḧαβ ≡
∑
i

v̈αiiβ (6.57)
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6.3. Moments of two-body Hamiltonians

Thus, the X-term reads,

X = Tr(ḧ2) (6.58)

Algorithm 6.3 gives example codes for computing the spectral moments 〈E1〉 and 〈E2〉 of
a two-body Hamiltonian for a many-electron system. Note that the input arguments of
the functions are identical to the arguments of H2 in Algorithm 1.3.

Algorithm 6.3: Spectral moments 〈E1〉 and 〈E2〉 of a two-body Hamiltonian (moment.py).

1 import numpy as np

2
3 # 1st moment of a two -body Hamiltonian

4 def H2m1(Norb , Ne , vee):

5 T1 = 0

6 idx = ((a,b) for a in range(Norb) for b in range(Norb) if a<b)

7 for (a,b) in idx:

8 T1 += vee[a,b,b,a]

9 return T1 * Ne*(Ne -1)/ Norb/(Norb -1)

10
11 # 2nd moment of a two -body Hamiltonian

12 def H2m2(Norb , Ne , vee):

13 T1 = T2 = 0

14 idx = [(a,b) for a in range(Norb) for b in range(Norb) if a<b]

15 for (a,b) in idx:

16 T1 += vee[a,b,b,a]

17 for (c,d) in idx:

18 T2 += vee[a,b,d,c]*vee[c,d,b,a]

19
20 hee = np.trace(vee , axis1=1, axis2 =2) # hee[a,b] = np.trace(vee[a,:,:,b])

21 X = np.trace(hee@hee)

22
23 return (T2 * (Norb -Ne)*(Norb -Ne -1)

24 + X * (Ne -2)*( Norb -Ne)

25 + T1**2 * (Ne -2)*(Ne -3)) * Ne*(Ne -1)/ Norb/(Norb -1)/(Norb -2)/(Norb -3)

To appreciate the powerfulness (and to confirm the correctness) of the moment formulas,
we run a test in Algorithm 6.4. The example problem size is Norb = 16 and Ne = 8.
We compute 〈E1〉 and 〈E2〉 of a two-body Hamiltonian with a randomly generated two-
electron symmetric tensor. The script in Algorithm 6.4 computes the moments using both
the efficient moment formulas and the expensive many-body approach. A test run gives
the following output:

Method 1: moment formulas

<E1> = -13.979175

<E2> = 841.826378

Time elapsed: 0.009434 seconds

Method 2: full many-body calculation

<E1> = -13.979175

<E2> = 841.826378

Time elapsed: 456.797280 seconds

129



6. Moments of many-electron Hamiltonians

Algorithm 6.4: Computing spectral moments 〈E1〉 and 〈E2〉 of a two-body Hamiltonian
using the efficient moment formulas and the expensive many-electron ap-
proach. The file hamiltonian.py refers to Algorithm 1.3.

1 from moment import H2m1 , H2m2

2 from hamiltonian import H2

3 import numpy as np

4 import time

5
6 # Problem size

7 (Norb , Ne) = (16, 8)

8
9 # Random symmetric tensor elements

10 def randvee(Norb):

11 np.random.seed (0)

12 vee = np.zeros ((Norb ,Norb ,Norb ,Norb))

13 idx = ((a,b,c,d) for a in range(Norb) for b in range(Norb) if a<b

14 for c in range(Norb) for d in range(Norb) if c<d)

15 for (a,b,c,d) in idx:

16 r = np.random.rand()

17 vee[a,b,c,d] = vee[b,a,d,c] = vee[c,d,a,b] = vee[d,c,b,a] = r

18 vee[a,b,d,c] = vee[b,a,c,d] = vee[c,d,b,a] = vee[d,c,a,b] = -r

19 return vee

20 vee = randvee(Norb)

21
22 # Efficient computation using the moment formulas

23 start = time.time()

24 E1 = H2m1(Norb , Ne, vee)

25 E2 = H2m2(Norb , Ne, vee)

26 end = time.time()

27 print(’Method 1: moment formulas ’)

28 print(’<E1 > = %f’ % E1)

29 print(’<E2 > = %f’ % E2)

30 print(’Time elapsed: %f seconds ’ % (end -start ))

31
32 # Expensive computation using the many -electron Hamiltonian

33 start = time.time()

34 H = H2(Norb , Ne , vee)

35 E1 = np.trace(H )/len(H)

36 E2 = np.trace(H@H)/len(H)

37 end = time.time()

38 print(’Method 2: full many -body calculation ’)

39 print(’<E1 > = %f’ % E1)

40 print(’<E2 > = %f’ % E2)

41 print(’Time elapsed: %f seconds ’ % (end -start ))

Eqn. (6.54) is the 2nd-moment formula for a general two-body Hamiltonian. A typical
example is the Coulomb Hamiltonian for a given system. In Chapter 5, we computed
the variances of Coulomb Hamiltonians for atomic open-shell systems (from a many-body
approach). From Eqns. (6.46) and (6.54) we can now derive the variances of different
open-shell systems in terms of the Slater-Condon parameters and the Gaunt coefficients
explicitly (see Table B.5 in Appendix B).

At this stage, we are able to – for instance – compare the interaction strengths (by com-
paring the variances) between the spin-orbit (one-body) and the Coulomb (two-body)
interactions for a given system without doing a many-body calculation. This is a big
milestone of attacking the “impossible” many-body problems. In this chapter, we man-
aged to solve a general one-body Hamiltonian up to the n-th moment, where n can be any

130



6.3. Moments of two-body Hamiltonians

non-negative integer1; we also managed to solve a general two-body Hamiltonian up to
the 2nd moment. Higher-order moments should be possible to derive although it would
require a lot of patience. Moreover, moments of general Hamiltonians consisting both
one-body and two-body terms can be further investigated.

1The zeroth moment, which we didn’t mention, is trivially
〈
E0
〉

= 1
dimH

∑dimH

i=1 〈i | i〉 = 1.
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7. Recursive computation of Gaunt
coefficients

7.1. Gaunt coefficients

Gaunt coefficients are purely solid angle integrals over three spherical harmonics [49]:

〈Yl1m1 |Ykµ |Yl2m2〉 =

∫ 2π

0

dφ

∫ π

0

dθ sin θ Yl1m1(θ, φ)Ykµ(θ, φ)Yl2m2(θ, φ) (7.1)

Here we use a simplified notation:

〈Yl1m1|Ykµ |Yl2m2〉 7→ 〈l1m1| kµ |l2m2〉 (7.2)

Gaunt coefficients are ubiquitous for problems that involve spherical harmonic expansions
[50]. Previously we have seen Gaunt coefficients in the Coulomb matrix elements (4.12).
In Chapter 8, we will encounter Gaunt coefficients for evaluating orbital overlaps. In
Chapter 9, we will need the coefficients till large angular quantum numbers for the so
called re-centering technique.

The purpose of this chapter is to develop a systematic approach based on finite-precision
arithmetic to compute the Gaunt coefficients efficiently and accurately, even for large
angular momenta.

7.2. Symmetry properties

Before attempting to compute a Gaunt coefficient, the first question to ask is: “Is this
Gaunt coefficient trivial?” For a given Gaunt coefficient:

〈l1m1| kµ |l2m2〉

It is non-trivial1 if the following conditions (the selection rules) are satisfied:

µ = m1 −m2 (7.3)

|l1 − l2| ≤ k ≤ l1 + l2 and l1 + l2 + k is even (7.4)

1It would be less appropriate to call it non-zero, since a non-trivial Gaunt coefficient may happen to
have a zero value.
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If the selection rules are not fulfilled, the Gaunt coefficients are simply zeros. This property
greatly reduces our computational effort. Notice that the condition (7.3) restricts µ to
take one unique value. Thus it is normally sufficient to specify m1 and m2.

There are several symmetry properties of Gaunt coefficients which can also simplify the
computation, for instance,

• Gaunt coefficients are real numbers

〈l1m1| kµ |l2m2〉 = 〈l1m1| kµ |l2m2〉 (7.5)

• Inverse symmetry

〈l1m1| kµ |l2m2〉 = 〈l1,−m1| k,−µ |l2,−m2〉 (7.6)

• Transpose symmetry (kµ denotes Ykµ)

〈l1m1| kµ |l2m2〉 = 〈l2m2| kµ |l1m1〉 (7.7)

7.3. Explicit formula

There is a close relation between the Wigner 3j symbols and the integral of three spherical
harmonics (note that the Yl1m1 below is without complex conjugate) [51]:∫ 2π

0

dφ

∫ π

0

dθ sin θ Yl1m1(θ, φ)Yl2m2(θ, φ)Yl3m3(θ, φ)

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
(7.8)

Eqn. (7.8) can be further expanded more explicitly [52, 53]:∫ 2π

0

dφ

∫ π

0

dθ sin θ Yl1m1(θ, φ)Yl2m2(θ, φ)Yl3m3(θ, φ)

= ∆(m1+m2+m3 = 0) ∆(|l1−l2| ≤ l3 ≤ l1+l2) ∆(l1+l2+l3 is even)

× (−1)L+l3+m1−m2

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

× L!

(2L+ 1)!

(−l1 + l2 + l3)!(l1 − l2 + l3)!(l1 + l2 − l3)!

(L− l1)!(L− l2)!(L− l3)!

×
√

(l1 −m1)!(l1 +m1)!(l2 −m2)!(l2 +m2)!(l3 −m3)!(l3 +m3)!

×
γmax∑
γ=γmin

(−1)γ

γ!(l3 − l1 −m2 + γ)!(l3 − l2 +m1 + γ)!(l1 −m1 − γ)!(l2 +m2 − γ)!(l1 + l2 − l3 − γ)!

(7.9)
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where L = 1
2
(l1 + l2 + l3) and ∆(condition) returns 1 if the condition is true, otherwise

0. The index γ runs over all integer values where no negative factorial number occurs.
Equivalently,

γmin = max(0, −l3+l1+m2, −l3+l2−m1)

γmax = min(l1−m1, l2+m2, l1+l2−l3)

The explicit formula (7.9) is in fact unsuitable for finite-precision arithmetic, because the
sum over γ involves large factorials with alternating signs. Such operations can cause the
loss of significance in the floating-point arithmetic.

Handling large factorials with finite-precision arithmetic:

Suppose we want to compute, say,

25!× 50!

32!×
√

69!

To avoid numerical overflow or underflow arising from the factorials in an intermedi-
ate stage, we transform the problem using natural logarithm. Without individually
evaluating each factorial, we first combine the terms under the logarithm scale. After
the combination, we take exponential to bring out the final result. Equivalently, we
evaluate,

exp

(
ln 25! + ln 50!− ln 32!− 1

2
ln 69!

)
Example Python code:

1 import math
2 import numpy as np
3
4 l o g f a c = np . append (0 , np . cumsum(np . l og (np . arange ( 1 , 7 0 ) ) ) ) # [ln(0!) ln(1!) ln(2!) ...]

5 r e s u l t = math . exp ( l o g f a c [ 2 5 ] + l o g f a c [ 5 0 ] − l o g f a c [ 3 2 ] − l o g f a c [ 6 9 ] / 2 )

An implementation of the explicit formula is given in Algorithm 7.1.

Algorithm 7.1: Compute Gaunt coefficients using the explicit formula.
1 import math

2 import numpy as np

3
4 # Integrate Y_{l1m1} Y_{l2m2} Y_{l3m3}

5 def I3Y(l1, l2, l3, m1, m2 , m3):

6 # Trivial cases

7 if l1 <abs(m1) or l2<abs(m2) or l3 <abs(m3) or (m1+m2+m3)!=0:

8 return 0

9 if not abs(l1 -l2)<=l3 <=(l1+l2) or (l1+l2+l3 )%2!=0:

10 return 0

11
12 # Logarithmic factorial

13 logfac = np.append(0, np.cumsum(np.log(np.arange(1, 2*(l1+l2 )+2))))

14
15 # Factorials in front of the sum

16 L = (l1+l2+l3)//2

17 gfac = logfac[L]+ logfac[-l1+l2+l3]+ logfac[l1-l2+l3]+ logfac[l1+l2-l3] \
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18 - logfac [2*L+1]- logfac[L-l1]-logfac[L-l2]-logfac[L-l3] \

19 + (logfac[l1-m1]+ logfac[l2-m2]+ logfac[l3-m3] \

20 + logfac[l1+m1]+ logfac[l2+m2]+ logfac[l3+m3])/2

21
22 # Calculate the sum

23 gsum = 0

24 imin = max(0, l1-l3+m2, l2-l3-m1)

25 imax = min(l2+m2, l1-m1, l1+l2 -l3)

26 for i in range(imin , imax +1):

27 gsum += (-1)**i * math.exp(gfac \

28 - logfac[l3-l1 -m2+i]-logfac[l1-m1 -i]-logfac[i] \

29 - logfac[l3-l2+m1+i]-logfac[l2+m2 -i]-logfac[l1+l2-l3 -i])

30
31 return ( -1)**(L+l3+m1-m2)*math.sqrt ((2*l1 +1)*(2* l2 +1)*(2* l3 +1)/(4* math.pi))* gsum

32
33 # Integrate conjugate(Y_{l1m1}) Y_{k,m1-m2} Y_{l2m2}

34 def Gaunt(l1, l2, k, m1 , m2):

35 return ( -1)**m1*I3Y(l1, k, l2, -m1 , m1 -m2, m2)

To test the accuracy of the numerical results produced by the explicit algorithm, we
implemented a symbolic version in Python using the sympy library as our reference.

For a given lmax, we compute all non-trivial Gaunt coefficients with l1 = lmax, l2 ≤ l1, and
for all possible k’s (according to the selection rule (7.4)). For instance, if lmax = 2, we
compute Gaunt coefficients:

〈2m1| 2µ |0m2〉 〈2m1| 1µ |1m2〉 〈2m1| 3µ |1m2〉
〈2m1| 0µ |2m2〉 〈2m1| 2µ |2m2〉 〈2m1| 4µ |2m2〉

with all possible (m1,m2) and µ = m1 −m2, which contain in total 78 non-trivial Gaunt
coefficients.

A typical Gaunt coefficient has a value between −1 to 1. Since there are non-trivial
Gaunt coefficients with zero or near-zero values, we compute the absolute errors of the
Gaunt matrices. For a each lmax, we ask for the maximum absolute error among all Gaunt
coefficients calculated. We tested the explicit algorithm for lmax from 0 to 65. The error
plot is shown in Fig. 7.1. The error grows exponentially with lmax (linear in log scale). At
lmax = 65, the explicit implementation is accurate to about 2 or 3 decimal points.
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Figure 7.1.: Maximum absolute errors (in log10 scale) of all Gaunt coefficients computed
with the explicit formula using double-precision floating-point format.
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7.4. Gaunt coefficients arranged as a matrix

Given l1, l2, and k, we can arrange the Gaunt coefficients in a matrix form [15]. As an
illustration, we consider the Gaunt coefficient matrix for l1 = 1 and l2 = 2 (for each k
there is one such matrix). This matrix has the following rectangular shape:

−2 −1 0 1 2

1

0

−1

where the m1 index traverses vertically (row number) and the m2 index traverses horizon-
tally (column number). Notice that µ is determined uniquely by m1 −m2 for non-trivial
elements.

To get an intuitive understanding of the Gaunt matrices, Fig. 7.2 visualizes three examples
with l1 = l2 = 10 and k = 4, 10, 14, respectively. The values of each element are mapped
to red-blue colors, where red ones indicate positive values and blue ones indicate negative
values. Notice that the elements with k < |µ| are zeros: if k = 0, the matrix is simply
diagonal; as k increases, the non-trivial region becomes broader. It is important to realize
that the Gaunt coefficients are highly oscillatory. This becomes a major problem when
we evaluate them numerically with finite-precision arithmetic.
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(c) l1 = l2 = 10, k = 14

Figure 7.2.: Typical structures of Gaunt matrices. (a) Gaunt matrix with l1 = l2 = 10
and k = 4; (b) Gaunt matrix with l1 = l2 = 10 and k = 10; (c) Gaunt
matrix with l1 = l2 = 10 and k = 14; Red colors indicate positive values
and blue colors indicate negative values. The matrix elements are highly
oscillatory. Elements with k < |µ| are zeros: the “non-trivial band” expands
as k increases.

To fill up a matrix, naively, we would compute (2l1 + 1)(2l2 + 1) number of elements. But
the inverse symmetry (7.6) helps to reduce half of the computation. While the central

137



7. Recursive computation of Gaunt coefficients

element (m1=0,m2=0) is unique, all the others are in pairs: (m1,m2) = (−m1,−m2).
Moreover, we do not need to compute elements with k < |µ|, as they are simply zeros. A
Python routine for filling up a Gaunt matrix is given in Algorithm 7.2.

Algorithm 7.2: Filling up a Gaunt matrix.
1 # Create a Gaunt matrix

2 # (-l1 ,-l2) ... (-l1, l2)

3 # ... ... ...

4 # ( l1,-l2) ... ( l1 , l2)

5 def Gaunt_mat(l1, l2, k):

6 G = np.zeros ((2*l1+1, 2*l2+1))

7
8 # Diagonal mu=0

9 for m in range(min(l1,l2)+1):

10 G[l1-m, l2-m] = G[l1+m, l2+m] = Gaunt(l1, l2 , k, m, m)

11
12 # Off -diagonal mu=1,2,...,k

13 for mu in range(1, k+1):

14 for m1 in range(max(-l2+mu,-l1), min(l2+mu ,l1 )+1):

15 m2 = m1-mu

16 G[l1-m1 , l2 -m2] = G[l1+m1, l2+m2] = Gaunt(l1, l2, k, m1 , m2)

17 return G

7.5. Recursion relations

Gaunt coefficients consist of three spherical harmonics which can be expressed in associ-
ated Legendre polynomials. From the existing recursion relations of associated Legendre
polynomials, one can derive the corresponding recursion relations for Gaunt coefficients.
The detailed derivations are shown in the end of this section. Here we put the recursions
directly:

〈l1m1| kµ |l2m2〉 = A 〈l1−1,m1| k−1, µ |l2m2〉+B 〈l1+1,m1| k−1, µ |l2m2〉+ C 〈l1m1| k−2, µ |l2m2〉
(7.10)

where,

A =
√

(2k+1)(2k−1)(l1+m1)(l1−m1)
(k+µ)(k−µ)(2l1+1)(2l1−1)

; B =
√

(2k+1)(2k−1)(l1+m1+1)(l1−m1+1)
(k+µ)(k−µ)(2l1+3)(2l1+1)

; C = −
√

(2k+1)(k+µ−1)(k−µ−1)
(k+µ)(k−µ)(2k−3)

Normally, a recursive function implies exponential computational effort. Because each
node branches into several nodes, as the iteration goes deeper, the “tree” grows expo-
nentially. Here, the branching nodes are aligned on a grid with l1 and k as coordinates
(notice that the recursive indices are l1 and k only). This recursion stops when k = |µ|.
If k = µ = 0, 〈l1m1| 00 |l2m2〉 is simply 1√

4π
δl1l2δm1m2 . But, in general, we have to solve

〈l1m1| k,±k |l2m2〉 such that we can have starting points for the recursion. Pictorially, we
illustrate the recursion scheme for 〈32| 81 |51〉 in Fig. 7.3. All empty circles indicate zero
elements. Only the solid circles are the non-trivial Gaunt coefficients to compute. The
blue dashed lines enclose the region where the selection rules are fulfilled. The red dashed
lines mark the boundaries where l = |m| for Ylm. To reach the target 〈32| 81 |51〉, we
start from the base cases 〈42| 11 |51〉 and 〈62| 11 |51〉, then travel along the grid towards
〈32| 81 |51〉.
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Figure 7.3.: Diagram for computing the Gaunt coefficient 〈32| 81 |51〉. All empty circles
indicate zero elements. Solid circles are the non-trivial Gaunt coefficients to
compute. The blue dashed lines enclose the region where the selection rules
are fulfilled. The red dashed lines mark the boundaries where l = |m| for Ylm.
To reach the target 〈32| 81 |51〉, we start from the base cases 〈42| 11 |51〉 and
〈62| 11 |51〉, then travel along the grid towards 〈32| 81 |51〉.

For the base cases, it is sufficient to consider 〈l1m1| kk |l2m2〉, since we have the inverse
symmetry

〈l1m1| kk |l2m2〉 = 〈l1,−m1| k,−k |l2,−m2〉
For this case, we use another recursion

〈l1m1| kk |l2m2〉 = D 〈l1−1,m1−1| k−1, k−1 |l2m2〉+ E 〈l1+1,m1−1| k−1, k−1 |l2m2〉 (7.11)

where,

D =
√

(2k+1)(l1+m1−1)(l1+m1)
2k(2l1+1)(2l1−1)

; E = −
√

(2k+1)(l1−m1+1)(l1−m1+2)
2k(2l1+1)(2l1+3)

This recursion iterates Ykk, Yk−1,k−1, · · · , Y00. Eventually, the only non-trivial root that
contributes is: 〈l2m2| 00 |l2m2〉 = 1√

4π
. As an example, we illustrate the recursion diagram

for computing 〈33| 88 |5,−5〉 in Fig. 7.4.

In either Fig. 7.3 or Fig. 7.4, if we fix all the other quantum numbers and vary l1 (moving
the target horizontally), the amount of computation scales linearly (reaches maximum
when l1 = l2). If we fix all the other quantum numbers and vary k (moving the target
vertically), the amount of computation scales quadratically (reaches maximum when k =
l1 + l2). As a remark, both recursions (7.10) and (7.11) should not be implemented as
a tree traversal. As we have discussed already, we can always start from the base cases
and traverse the rectangular grid. This should be programmed as a simple iteration
(Algorithm 7.3), which is the key of bringing exponential time scaling down to at most
quadratic.
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Figure 7.4.: Diagram for computing a Gaunt coefficient with k = µ. To reach the Gaunt
coefficient 〈l1m1| kk |l2m2〉, the starting point is: 〈l2m2| 00 |l2m2〉 = 1√

4π
.

Derivation of recursion (7.10):

We start from the relation between Ylm and Pm
l ,

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPm

l (cos θ) (7.12)

Now consider the recursion relation of the associated Legendre polynomials,

(l −m+ 1)Pm
l+1 = (2l + 1)xPm

l − (l +m)Pm
l−1 (7.13)

or, in terms of Ylm,

(l −m+ 1)

√
(2l + 1)(l +m+ 1)

(2l + 3)(l −m+ 1)
Yl+1,m = (2l + 1)xYlm − (l +m)

√
(2l + 1)(l −m)

(2l − 1)(l +m)
Yl−1,m (7.14)
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Now, substitutions,

〈l1m1| Ykµ |l2m2〉

= 〈l1m1|
1

k − µ

√
(2k + 1)(k − µ)

(2k − 1)(k + µ)

[
(2k − 1)xYk−1,µ − (k + µ− 1)

√
(2k − 1)(k − µ− 1)

(2k − 3)(k + µ− 1)
Yk−2,µ

]
|l2m2〉

=

√
(2k + 1)(2k − 1)

(k + µ)(k − µ)
〈 xYl1m1

| k−1, µ |l2m2〉 −
√

(2k + 1)(k + µ− 1)(k − µ− 1)

(k + µ)(k − µ)(2k − 3)
〈l1m1| k−2, µ |l2m2〉

=

√
(2k + 1)(2k − 1)

(k + µ)(k − µ)

[
l1 +m1

2l1 + 1

√
(2l1 + 1)(l1 −m1)

(2l1 − 1)(l1 +m1)
〈l1−1,m1| k−1, µ |l2m2〉

+
l1 −m1 + 1

2l1 + 1

√
(2l1 + 1)(l1 +m1 + 1)

(2l1 + 3)(l1 −m1 + 1)
〈l1+1,m1| k−1, µ |l2m2〉

]

−
√

(2k + 1)(k + µ− 1)(k − µ− 1)

(k + µ)(k − µ)(2k − 3)
〈l1m1| k−2, µ |l2m2〉

=

√
(2k + 1)(2k − 1)(l1 +m1)(l1 −m1)

(k + µ)(k − µ)(2l1 + 1)(2l1 − 1)
〈l1−1,m1| k−1, µ |l2m2〉

+

√
(2k + 1)(2k − 1)(l1 +m1 + 1)(l1 −m1 + 1)

(k + µ)(k − µ)(2l1 + 3)(2l1 + 1)
〈l1+1,m1| k−1, µ |l2m2〉

−
√

(2k + 1)(k + µ− 1)(k − µ− 1)

(k + µ)(k − µ)(2k − 3)
〈l1m1| k−2, µ |l2m2〉 Q.E.D. (7.15)

Derivation of recursion (7.11):

Consider the recursion for P l
l :

P l
l = −(2l − 1)

√
1− x2P l−1

l−1 (7.16)

In terms of Ykk, we have

Ykk = −
√

2k + 1

2k

√
1− x2eiφYk−1,k−1 (7.17)

Now,

〈l1m1| Ykk |l2m2〉 = −〈l1m1|
√

2k + 1

2k

√
1− x2eiφYk−1,k−1 |l2m2〉

= −
√

2k + 1

2k
〈
√

1− x2e−iφYl1m1| k−1, k−1 |l2m2〉 (7.18)

Consider another recursion for Pm
l :

√
1− x2Pm

l =
1

2l + 1

[
(l −m+ 1)(l −m+ 2)Pm−1

l+1 − (l +m− 1)(l +m)Pm−1
l−1

]
(7.19)
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In terms of Ylm, we have

√
1− x2e−iφYlm =

√
(l −m+ 1)(l −m+ 2)

(2l + 1)(2l + 3)
Yl+1,m−1 −

√
(l +m− 1)(l +m)

(2l + 1)(2l − 1)
Yl−1,m−1 (7.20)

Hence, recursion (7.18) continues:

〈l1m1| kk |l2m2〉

= −
√

2k + 1

2k
〈
√

1− x2e−iφYl1m1
| k−1, k−1 |l2m2〉

=

√
(2k + 1)(l1 +m1 − 1)(l1 +m1)

2k(2l1 + 1)(2l1 − 1)
〈l1−1,m1−1| k−1, k−1 |l2m2〉

−
√

(2k + 1)(l1 −m1 + 1)(l1 −m1 + 2)

2k(2l1 + 1)(2l1 + 3)
〈l1+1,m1−1| k−1, k−1 |l2m2〉 Q.E.D. (7.21)

7.6. Re-ordering

Gaunt coefficients are highly oscillating (see Fig. 7.2), numerically it is a big challenge to
compute them using finite-precision arithmetic. Here we will discuss a simple re-ordering
technique that can significantly improve the numerical accuracy.

It should be clear that, for instance, the following two Gaunt coefficients are identical,∫
dΩ Yl1m1YkµYl2m2 =

∫
dΩ Yl1m1Yl2m2Ykµ

since we only re-ordered two functions in the integrand. Using the relation,

Ylm = (−1)mYl,−m (7.22)

we can see that the following 6 Gaunt coefficients with re-ordered spherical harmonics are
equivalent:

〈l1m1| kµ |l2m2〉 (−1)m2 〈k,−µ| l1,−m1 |l2m2〉 (−1)µ 〈l2,−m2| l1,−m1 |kµ〉
〈l1m1| l2m2 |kµ〉 (−1)m2 〈k,−µ| l2m2 |l1,−m1〉 (−1)µ 〈l2,−m2| kµ |l1,−m1〉

Although these elements are analytically identical, our recursion relation treats l1, l2, and
k differently. Numerically, they can produce different results due to finite-precision arith-
metic. An example of numerical errors for producing a Gaunt matrix 〈30m1| 40µ |30m2〉
is shown in Fig. 7.5. The errors are plotted in the log10 scale and color mapped, where the
dark blue represents error less than 10−16 and the bright yellow represents error greater
than 10−10. The error patterns look differently with the different choices of ordering.
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Figure 7.5.: Error of Gaunt coefficients (l1 = l2 = 30, k = 40) computed with different
ordering. Dark blue: elements with small error; Bright yellow: elements with
large error.
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Figure 7.6.: Error of Gaunt coefficients (l1 = l2 = 30, k = 40) computed with different
ordering. Dark blue: elements with small error; Bright yellow: elements with
large error.
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If we overlap the 6 error images in Fig. 7.5, the minimum error at each element tells the
lowest possible error in principle we can achieve using our recursion. The question is,
how should we re-order the three spherical harmonics to achieve the minimum error? We
have tested 6 options of sorting |m1|, |m2|, and |µ| element-wise. The results are shown in
Fig. 7.6. Evidently, the re-ordering with |m1| ≥ |m2| ≥ |µ| produces the lowest error. The
rationale behind is that (consider l1 = l2 = k for simplicity) when we maximize |m1|, we
are pushing the red vertical line in Fig. 7.3 to the right as much as possible, thus reducing
the number of Gaunt coefficients to be computed; when we minimize |µ|, we are lowering
the red horizontal line in Fig. 7.3 as much as possible, thus minimizing the k value in Ykk
of the base cases, as error on base cases increases with k.

Algorithm 7.3: Compute Gaunt coefficients using the recursion relations (gaunt.py).
1 import math

2 import numpy as np

3
4 # Recursion coeffcients

5 def A(l, k, m, mu):

6 return math.sqrt ((2*k+1)*(2*k-1)*(l+m)*(l-m)/((k+mu)*(k-mu)*(2*l+1)*(2*l-1)))

7 def B(l, k, m, mu):

8 return math.sqrt ((2*k+1)*(2*k-1)*(l+m+1)*(l-m+1)/((k+mu)*(k-mu)*(2*l+3)*(2*l+1)))

9 def C(k, mu):

10 return -math.sqrt ((2*k+1)*(k+mu -1)*(k-mu -1)/((k+mu)*(k-mu)*(2*k-3)))

11 def D(l, k, m):

12 return math.sqrt ((2*k+1)*(l+m-1)*(l+m)/(2*k*(2*l+1)*(2*l -1)))

13 def E(l, k, m):

14 return -math.sqrt ((2*k+1)*(l-m+1)*(l-m+2)/(2*k*(2*l+1)*(2*l+3)))

15
16 # Base case <l1m1|kk|l2m2 >*sqrt (4*pi)

17 def Base(l1, l2, k, m1, m2):

18 # Trivial cases

19 if l1 <abs(m1) or l2<abs(m2) or m1 -m2!=k or (l1+l2+k)%2!=0 or not abs(l1-l2)<=k<=l1+l2:

20 return 0

21
22 # Grid size

23 (m, n) = ((k+l1-l2)//2+1 , (k-l1+l2 )//2+1)

24
25 # Index generator

26 idx = ((i, j) for i in range(m) for j in range(n) if not i==j==0)

27
28 # Gaunts

29 G = np.zeros((m+1, n+1)) # with last ghost row & col

30 G[0, 0] = 1.0

31 for (i, j) in idx:

32 G[i, j] = D(l2+i-j, i+j, m1-k+i+j)*G[i-1, j] \

33 + E(l2+i-j, i+j, m1-k+i+j)*G[i, j-1]

34
35 return G[m-1, n-1]

36
37 # Gaunt coefficient <l1m1|kmu|l2m2 >

38 def Gaunt(l1, l2, k, m1 , m2):

39 mu = m1-m2

40 # Trivial cases

41 if l1 <abs(m1) or l2<abs(m2) or k<abs(mu) or (l1+l2+k)%2!=0 or not abs(l1 -l2)<=k<=l1+l2:

42 return 0

43
44 # Re-arrange such that |m1|>=|m2|>=|mu|

45 sign = 1

46 if abs(m1)<abs(m2): (l1 , m1, l2, m2) = (l2, -m2 , l1, -m1); sign *= (-1)**mu

47 if abs(m1)<abs(mu): (l1 , m1, k, mu) = ( k, -mu, l1 , -m1); sign *= (-1)**m2

48 if abs(m2)<abs(mu): (l2 , m2, k, mu) = ( k, mu , l2 , m2)
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49 if mu <0: (m1, m2 , mu) = (-m1, -m2, -mu) # Make mu positive

50
51 # Grid size

52 (m, n) = ((k+l1-l2)//2+1 , (k-l1+l2 )//2+1)

53
54 # Index generator

55 idx0 = ((i, j) for i in range(m) for j in range(n) if l2+i-j>=abs(m1) and i+j==abs(mu))

56 idx = ((i, j) for i in range(m) for j in range(n) if l2+i-j>=abs(m1) and i+j> abs(mu))

57
58 # Gaunts

59 G = np.zeros((m+1, n+1)) # with last ghost row & col

60 # Base cases

61 for (i, j) in idx0:

62 G[i, j] = Base(l2+i-j, l2 , i+j, m1, m2)

63 # Non -base cases

64 for (i, j) in idx:

65 G[i, j] = A(l2+i-j, i+j, m1, mu)*G[i-1, j] \

66 + B(l2+i-j, i+j, m1, mu)*G[i, j-1] \

67 + C( i+j, mu)*G[i-1, j-1]

68
69 return sign*G[m-1, n-1]/ math.sqrt (4* math.pi)

7.7. Error comparison among different algorithms

In 1998, Didier Sébilleau reviewed several different methods for evaluating Gaunt coeffi-
cients [50]. Sébilleau kindly provided me the source codes which were implemented in [50].
Among the several algorithms in [50], the most successful one was the Schulten-Gordon
method, which is based on the explicit formula (7.9) and using the recursion relations
among the Wigner 3j symbols.

In this section, we compare the error behaviors among the three methods: (a) the explicit
implementation (Algorithm 7.1); (b) the Schulten-Gordon mehod [50]; (c) the recursive
method implemented in this work (Algorithm 7.3). All the calculations are based on
double-precision floating-point format. Table 7.1 lists a few selected values of Gaunt
coefficients computed from the three methods. Fig. 7.7 and Fig. 7.8 show two examples
of the error patterns of Gaunt matrices with (l1 = 30, l2 = 20, k = 10) and (l1 = 30, l2 =
30, k = 40), respectively. Fig. 7.9 plots the maximum absolute errors (in log10 scale) of all
Gaunt coefficients computed with different methods. At lmax = 65, the recursive method
in this work produces Gaunt coefficients accurate to about 11 decimal points.

Table 7.1.: Examples of values of Gaunt coefficients.

Algorithms

〈l1m1| kµ |l2m2〉
l1 k l2
60 40 60

l1 k l2
60 40 60

l1 k l2
30 30 30

l1 k l2
30 30 30

m1 µ m2

20 −40 60
m1 µ m2

0 0 0
m1 µ m2

30 30 0
m1 µ m2

0 0 0
Explicit 0.0000000100281641 0.0423469833493180 −0.0001173709420163 0.0530907569972774

Schulten-Gordon 0.0000000096273087 0.0423472810278219 −0.0001173709419646 0.0530907570759748
This work 0.0000000100281641 0.0423472810278134 −0.0001173709420162 0.0530907570759795

Exact 0.0000000100281641 0.0423472810278135 −0.0001173709420163 0.0530907570759797
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7.7. Error comparison among different algorithms
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Figure 7.7.: Error patterns of Gaunt matrices with l1 = 30, l2 = 20, and k = 10. (a)
Explicit formula; (b) Schulten-Gordon; (c) This work.
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Figure 7.8.: Error patterns of Gaunt matrices with l1 = l2 = 30 and k = 40. (a) Explicit
formula; (b) Schulten-Gordon; (c) This work.
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Figure 7.9.: Maximum absolute errors (in log10 scale) of all Gaunt coefficients computed
with different methods using double-precision floating-point format.
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7. Recursive computation of Gaunt coefficients

7.8. List of the first few Gaunt coefficients in matrix form

〈0m1| 0µ |0m2〉:
1√
4π

[
1
]

(7.23)

〈1m1| 0µ |1m2〉:
1√
4π

 1 0 0
0 1 0
0 0 1

 (7.24)

〈1m1| 2µ |1m2〉:
1√
4π

√
5

5

 −1
√

3 −
√

6

−
√

3 2 −
√

3

−
√

6
√

3 −1

 (7.25)

〈2m1| 0µ |2m2〉:

1√
4π


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (7.26)

〈2m1| 2µ |2m2〉:

1√
4π

√
5

7


−2

√
6 −2 0 0

−
√

6 1 1 −
√

6 0
−2 −1 2 −1 −2

0 −
√

6 1 1 −
√

6

0 0 −2
√

6 −2

 (7.27)

〈2m1| 4µ |2m2〉:

1√
4π

1

7


1 −

√
5

√
15 −

√
35

√
70√

5 −4
√

30 −
√

40
√

35√
15 −

√
30 6 −

√
30

√
15√

35 −
√

40
√

30 −4
√

5√
70 −

√
35

√
15 −

√
5 1

 (7.28)
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7.8. List of the first few Gaunt coefficients in matrix form

〈3m1| 0µ |3m2〉:

1√
4π



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(7.29)

〈3m1| 2µ |3m2〉:

1√
4π

√
5

15



−5 5 −
√

10 0 0 0 0

−5 0
√

15 −
√

20 0 0 0

−
√

10 −
√

15 3
√

2 −
√

24 0 0

0 −
√

20 −
√

2 4 −
√

2 −
√

20 0

0 0 −
√

24
√

2 3 −
√

15 −
√

10

0 0 0 −
√

20
√

15 0 −5

0 0 0 0 −
√

10 5 −5


(7.30)

〈3m1| 4µ |3m2〉:

1√
4π

1

11



3 −
√

30
√

54 −
√

63
√

42 0 0√
30 −7

√
32 −

√
3 −

√
14

√
70 0√

54 −
√

32 1
√

15 −
√

40
√

14
√

42√
63 −

√
3 −

√
15 6 −

√
15 −

√
3

√
63√

42
√

14 −
√

40
√

15 1 −
√

32
√

54

0
√

70 −
√

14 −
√

3
√

32 −7
√

30

0 0
√

42 −
√

63
√

54 −
√

30 3


(7.31)

〈3m1| 6µ |3m2〉:

1√
4π

5
√

13

429



−1
√

7 −
√

28
√

84 −
√

210
√

462 −
√

924

−
√

7 6 −
√

105
√

224 −
√

378
√

504 −
√

462

−
√

28
√

105 −15
√

350 −
√

420
√

378 −
√

210

−
√

84
√

224 −
√

350 20 −
√

350
√

224 −
√

84

−
√

210
√

378 −
√

420
√

350 −15
√

105 −
√

28

−
√

462
√

504 −
√

378
√

224 −
√

105 6 −
√

7

−
√

924
√

462 −
√

210
√

84 −
√

28
√

7 −1


(7.32)

149





8. Orbital overlaps and basis
orthonormalization

8.1. Orbital overlaps

Imagine the simple picture (Fig. 8.1): a 1s orbital ϕ1s(r) is centered around the origin,
another 1s orbital ϕ1s(r−a) is centered about position a.

-2 -1 0 1 2 3 4 5 6 7

x

-10

-8

-6

-4

-2

0

2

4

6

V

Figure 8.1.: A two-site system with two 1s orbitals. This figure only serves as showing a
basic concept, as we are kind of drawing 3D wave functions on a 1D potential.

If the two sites are well separated (significantly greater than a Bohr radius), to a good
approximation, we could ignore the overlap and treat the two orbitals as orthonormal.
But if the two sites are close, it is necessary to evaluate the overlap

〈ϕ1s(r) |ϕ1s(r−a)〉 =

∫
dr ϕ1s(r)ϕ1s(r−a) (8.1)

Evaluating such an integral is not a trivial task (especially for orbitals with higher an-
gular momenta), as it involves “two centers”. Without unnecessary excursions, I directly
introduce the spirit of conducting such integrations. It consists of two steps:

1. Expand each atomic orbital into plane waves;

2. Integrate over the plane waves.
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8. Orbital overlaps and basis orthonormalization

At first, this might seem crazy: an atomic orbital does not look like a plane wave at all!
One must use a lot of plane waves to construct an atomic orbital. Expanding an arbitrary
function into plane waves is nothing but the Fourier transformation. As we are going to
explain step by step, this expansion from an atomic orbital into plane waves won’t be too
difficult. But first of all, why plane waves? What is so good about plane waves? The
answer is: they are free to translate. Translating a plane wave is nothing but multiplying
by a phase prefactor. Thus we can easily get rid of the two-center difficulty.

Consider again (8.1): Suppose we have the two orbitals expanded in plane waves:

|ϕ1s(r)〉 =

∫
dk c(k) |k〉 (8.2)

|ϕ1s(r−a)〉 =

∫
dk e−ik·ac(k) |k〉 (8.3)

where c(k)’s are the expansion coefficients. Now,

〈ϕ1s(r) |ϕ1s(r−a)〉 =

∫
dk1

∫
dk2 c(k1)c(k2)e−ik2·a 〈k1 |k2〉︸ ︷︷ ︸

δ(k1−k2)

=

∫
dk c(k)c(k)e−ik·a (8.4)

Integrating (8.4) is much easier than the original (8.1). Apparently, the most urgent
question is: how to expand an atomic orbital into plane waves?

8.2. Plane waves and spherical waves

Expanding an atomic orbital into plane waves consists of two steps:

1. Expand the atomic orbital into spherical waves;

2. Expand each spherical wave into plane waves.

First of all, it would be nice to have a brief overview on the concepts of plane waves and
spherical waves. Remember that they are both solutions of the free particle Schrödinger
equation, while the plane waves are solutions obtained in Cartesian coordinates (ϕ(r) =
X(x)Y (y)Z(z)) and the spherical waves are solutions obtained in spherical coordinates
(ϕ(r) = R(r)Y (θ, φ)).

Plane wave Spherical wave

Dirac notation |k〉 |klm〉

Real space
1

(
√

2π)3
eik·r

√
2

π
k jl(kr)Ylm(θ, φ)
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8.2. Plane waves and spherical waves

In real space representation, the prefactors

1

(
√

2π)3
and

√
2

π
k

are chosen such that the waves are orthonormal:

〈k1 |k2〉 = δ(k1 − k2) (8.5)

〈k1l1m1 | k2l2m2〉 = δ(k1 − k2)δl1l2δm1m2 (8.6)

Note that neither a plane wave nor a spherical wave is actually “normalized” (as they
cannot be): 〈k |k〉 =∞ and 〈klm | klm〉 =∞. Unlike a discrete basis set, the plane waves
and the spherical waves form continuous basis sets, which are orthonormalized “Diracly”.

The orthonormality enables us to have the completeness relations∫
dk |k〉 〈k| = 1 (8.7)∫ ∞

0

dk
∞∑
l=0

l∑
m=−l

|klm〉 〈klm| = 1 (8.8)

The task is to expand

|ϕα〉 =

∫
dk |k〉 〈k |ϕα〉 (8.9)

It seems like the spherical waves not involved. But evaluating the coefficient 〈k |ϕα〉
requires an intermediate step of the spherical wave expansion.

8.2.1. Expand a plane wave into spherical waves

It is important to get used to how the waves can be transformed in terms of each other.
Our first task is to expand a specific plane wave in terms of spherical waves.

|k〉 =

∫ ∞
0

dk′
∞∑
l′=0

l∑
m=−l

|k′lm〉 〈k′lm |k〉 (8.10)

Of course, the most difficult part is to work out the coefficient,

〈k′lm |k〉 =
il

k
Ylm(k̂)δ(k′ − k) (8.11)

which leads to,

|k〉 =
∞∑
l=0

l∑
m=−l

il

k
Ylm(k̂) |klm〉 (8.12)
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8. Orbital overlaps and basis orthonormalization

Eqn. (8.11) can be verified by bringing (8.12) back to real space, which recovers the plane
wave expansion [54] (DLMF 10.60.7)

1

(
√

2π)3
eik·r =

∞∑
l=0

l∑
m=−l

il

k
Ylm(k̂)

√
2

π
kjl(kr)Ylm(r̂)

eik·r = 4π
∞∑
l=0

iljl(kr)
l∑

m=−l

Ylm(k̂)Ylm(r̂) (8.13)

Using the addition theorem, one normally writes (8.13) in a simpler form:

eik·r =
∞∑
l=0

(2l + 1)iljl(kr)Pl(k̂ · r̂) (8.14)

This is something quite interesting to think about: keep adding spherical waves, you
eventually recover a plane wave! I would like to visualize this picture. Let’s consider a
plane wave traveling in ẑ direction.

We can not easily plot a plane wave with complex amplitude. But a linear combination
of two plane waves can produce a wave with only real amplitude.

cos(k · r) =
eik·r + e−ik·r

2
(8.15)

Therefore,

cos(k · r) =
1

2

∞∑
l=0

(2l + 1)iljl(kr)
[
Pl(k̂ · r̂) + Pl(−k̂ · r̂)

]
=

1

2

∞∑
l=0

(2l + 1)iljl(kr)
[
Pl(k̂ · r̂) + (−1)lPl(k̂ · r̂)

]
=

∞∑
l=0,2,4···

(2l + 1)iljl(kr)Pl(k̂ · r̂)

=
∞∑

l=0,2,4···

(2l + 1)(−1)l/2jl(kr)Pl(k̂ · r̂) (8.16)

Now we orient the wave pointing into the ẑ direction, thus ẑ · r̂ = cos θ.

cos(kr cos θ) =
∞∑

l=0,2,4···

(2l + 1)(−1)l/2jl(kr)Pl(cos θ) (8.17)

This equation can be very easily visualized. Recall the first few spherical Bessel functions:

j0(z) =
sin z

z
, j1(z) =

sin z

z2
− cos z

z
, j2(z) =

(
3

z3
− 1

z

)
sin z − 3

z2
cos z (8.18)

The construction of the plane wave is shown in Fig. 8.2. As the spherical waves accumu-
late, the radius of the circle enclosing the well formed plane wave region expands linearly.
This gives us a hint that for solving general two-center problems, the number of spherical
waves required increases linearly with the distance of the two sites. For a more general
discussion, see Section 9.1.
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8.2. Plane waves and spherical waves
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(a) 1st wave
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(b) 2nd wave
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(c) 3rd wave
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(d) 5th wave
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(e) 10th wave
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(f) 20th wave
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(g) 1 wave
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(h) 2 waves
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(i) 3 waves
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(j) 5 waves
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(k) 10 waves
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(l) 20 waves

Figure 8.2.: Individual spherical waves add up to a plane wave traveling in ẑ direction.
(a)-(f) individual spherical waves; (g)-(l) accumulated waves. The green circle
encloses the well formed plane wave region.

8.2.2. Expand a spherical wave into plane waves

The other way around: expand a spherical wave in terms of plane waves.

|klm〉 =

∫
dk′ |k′〉 〈k′ | klm〉 (8.19)

The coefficient is the complex conjugate of (8.11):

〈k′ | klm〉 = 〈klm |k′〉 =
i−l

k
Ylm(k̂′)δ(k′ − k) (8.20)

Therefore, (note:
∫
dk =

∫
dk k2

∫
dk̂),

|klm〉 = i−lk

∫
dk̂ Ylm(k̂) |k〉 (8.21)

8.2.3. Expand an atomic orbital into spherical waves

Expand an atomic orbital into spherical waves

|ϕnlm〉 =

∫ ∞
0

dk

∞∑
l′=0

l′∑
m′=−l′

|kl′m′〉 〈kl′m′ |ϕnlm〉 (8.22)
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8. Orbital overlaps and basis orthonormalization

The coefficient has a simple form thanks to the angular part:

〈kl′m′ |ϕnlm〉 =

√
2

π
k

∫ ∞
0

dr r2jl′(kr)Rnl(r)

∫
dr̂ Yl′m′(r̂)Ylm(r̂) = kInl(k)δl′m′,lm (8.23)

where we have defined,

Inl(k) ≡
√

2

π

∫ ∞
0

dr r2jl(kr)Rnl(r) (8.24)

Therefore,

|ϕnlm〉 =

∫ ∞
0

dk kInl(k) |klm〉 (8.25)

8.2.4. Expand an atomic orbital into plane waves

Finally, expanding an atomic orbital into plane waves:

|ϕnlm〉 =

∫
dk |k〉 〈k |ϕnlm〉 (8.26)

As mentioned in the beginning, evaluating 〈k |ϕnlm〉 is complicated. Thus, we first turned
our atomic orbital into spherical waves (8.25). Then, for each spherical wave, we transform
it into plane waves (8.21). In a compact form,

|ϕnlm〉 = i−l
∫
dk Inl(k)Ylm(k̂) |k〉 (8.27)

Table 8.1 summarizes the transformations that we have discussed.

Table 8.1.: Transformations among plane waves, spherical waves, and atomic orbitals.

|k〉 =
∞∑
l=0

l∑
m=−l

il

k
Ylm(k̂) |klm〉

|klm〉 = i−lk

∫
dk̂ Ylm(k̂) |k〉

|ϕnlm〉 =

∫ ∞
0

dk kInl(k) |klm〉

|ϕnlm〉 = i−l
∫
dk Inl(k)Ylm(k̂) |k〉
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8.3. Overlap formula for atomic orbitals

8.3. Overlap formula for atomic orbitals

We introduce a simplified notation:

|ϕα(r−a)〉 7→ |α(a)〉 (8.28)

By default, |α〉 denotes orbital-α centered at the origin.

The overlap of α centered at the origin and β centered at a is thus,

〈α | β(a)〉

Using (8.27) and (8.13), we can derive the general solution of orbital overlaps,

〈α | β(a)〉 =

(
ilα
∫
dk1 Iα(k1)Yα(k̂1) 〈k1|

)(
i−lβ

∫
dk2 Iβ(k2)Yβ(k̂2)e−ik2·a |k2〉

)
= ilα−lβ

∫
dk1

∫
dk2 Iα(k1)Iβ(k2)Yα(k̂1)Yβ(k̂2)e−ik2·a 〈k1 |k2〉︸ ︷︷ ︸

δ(k1−k2)

= ilα−lβ
∫
dk Iα(k)Iβ(k)Yα(k̂)Yβ(k̂)e−ik·a

= ilα−lβ
∫
dk Iα(k)Iβ(k)Yα(k̂)Yβ(k̂)

[
4π

∞∑
λ=0

i−λjλ(ka)
λ∑

µ=−λ

Yλµ(k̂)Yλµ(â)

]

= 4π
∞∑
λ=0

ilα−lβ−λ
∫ ∞

0

dk k2Iα(k)Iβ(k)jλ(ka)
λ∑

µ=−λ

∫
dk̂ Yα(k̂)Yλµ(k̂)Yβ(k̂)Yλµ(â)

= 4π

lα+lβ∑
λ=|lα−lβ |

ilα−lβ−λ
∫ ∞

0

dk k2Iα(k)Iβ(k)jλ(ka)
λ∑

µ=−λ

〈α|λµ |β〉Yλµ(â) (8.29)

Eqn. (8.29) is the general overlap formula. 〈α|λµ |β〉 is a Gaunt coefficient (or a linear
combination of Gaunt coefficients, depending on the forms of the α and β orbitals). The
index λ runs from |lα − lβ| to lα + lβ and jumps in steps of 2 (Eqn. (7.4)); The index µ
runs from −λ to λ, but only the µ’s which give non-trivial Gaunt coefficients contribute
(Eqn. (7.3)).

To get a flavor of the overlap formula, consider the simplest case with two hydrogen 1s
orbitals. In this case, lα = lβ = 0, the only non-trivial Gaunt coefficient is 〈00| 00 |00〉 =
1/
√

4π. Hence (λ = µ = 0),

〈1s | 1s(a)〉 =

∫ ∞
0

dk k2|I1s(k)|2j0(ka) (8.30)

Substituting the 1s wave function and the 0th spherical Bessel function,

R1s(r) = 2e−r and j0(kr) =
sin(kr)

kr
(8.31)
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8. Orbital overlaps and basis orthonormalization

I1s(k) =

√
2

π

∫ ∞
0

dr r2 j0(kr)R1s(r) =

√
2

π

4

(k2 + 1)2
(8.32)

〈1s | 1s(a)〉 =

∫ ∞
0

dk k2|I1s(k)|2j0(ka) =
1

3
(a2 + 3a+ 3)e−a (8.33)

The overlap (8.33) describes exactly the picture shown in Fig. 8.1. If the two orbitals are
both centered at the origin, the integral gives 1, which is the wave function normalization.
If we pull the two orbitals apart, the overlap integral drops exponentially. Now we have
understood the problem not only qualitatively, but also quantitatively.
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Figure 8.3.: Overlap integral between two hydrogen 1s orbitals separated at distance a
(units in Bohr radius). When a = 0, the overlap is simply the wave function
normalization. As a increases, the overlap drops exponentially.

Slater-Koster relations:

Eqn. (8.29) is an explicit formalism of the orbital overlaps in terms of atomic wave
functions. Closely related are the Slater-Koster relations [55, 56].

Consider 〈2px | 2px(a)〉. The Slater-Koster relations provide the decomposition:

〈2px | 2px(a)〉 = c1(ppσ) + c2(ppπ)

where,

(ppσ) = 〈2px | 2px(ax̂)〉 and (ppπ) = 〈2px | 2px(aŷ)〉 = 〈2px | 2px(aẑ)〉

The (ppσ) and (ppπ) are treated as input parameters in the Slater-Koster relations.
Now, from the overlap formula, we can work out the (ppσ) and (ppπ). However, since
the overlap formula is explicit, we have the advantage to skip the decomposition step
and directly work out the overlap.
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8.4. Orbital overlap angular dependencies

The overlap formula (8.29) can be written in a more compact form,

〈α | β(a)〉 =

lα+lβ∑
λ=|lα−lβ |

R
(λ)
αβ (a)A

(λ)
αβ (â) (8.34)

with the radial component,

R
(λ)
αβ (a) ≡

∫ ∞
0

dk k2Iα(k)Iβ(k)jλ(ka) (8.35)

and the angular component,

A
(λ)
αβ (â) ≡ ilα−lβ−λ4π

λ∑
µ=−λ

〈α|λµ |β〉Yλµ(â) (8.36)

While the radial component is system specific, the angular component is universal. As an
example, we work out the overlaps between the hydrogen orbitals: 2s, 2px, 2py, and 2pz.

First, we work out the I(k)’s (8.24):

I2s(k) =

√
2

π

∫ ∞
0

dr r2

(
sin(kr)

kr

)(
1√
2

(1− 1

2
r)e−r/2

)
=

32(4k2 − 1)√
π(4k2 + 1)3

(8.37)

I2p(k) =

√
2

π

∫ ∞
0

dr r2

(
sin(kr)

(kr)2
− cos(kr)

kr

)(
1√
24
re−r/2

)
=

128k√
3π(4k2 + 1)3

(8.38)

Next, we calculate the radial component (8.35).

R
(0)
2s,2s =

1

240
(a4 + 20a2 + 120a+ 240)e−a/2 (8.39)

R
(1)
2s,2p = −

√
3

720
(a4 + 2a3)e−a/2 (8.40)

R
(0)
2p,2p = − 1

720
(a4 − 60a2 − 360a− 720)e−a/2 (8.41)

R
(2)
2p,2p =

1

720
(a4 + 6a3 + 12a2)e−a/2 (8.42)

The angular component (8.36) can be obtained by inserting the Gaunt coefficients and
the cubic harmonics. For instance,

A(1)
s,px = i−2 4π√

2

(
〈00| 11 |1,−1〉Y11(â)− 〈00| 1,−1 |11〉Y1,−1(â)

)
= −
√

2π
(
Y1,−1(â)− Y11(â)

)
= −
√

3âx (8.43)

where âx = ax/a (called the direction cosine) is the x-component of the unit vector â. All
the angular dependences between s- and p- orbitals are given in Table 8.2.
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8. Orbital overlaps and basis orthonormalization

Table 8.2.: Angular dependences of s- and p-orbital overlaps A
(λ)
αβ (â) (8.36). The unit

vector â points from the left indexed orbital to the right. âx, ây, âz are the
direction cosines. It might be helpful to summarize the results in more compact
forms: A

(0)
s,s = 1, A

(1)
s,pi = −A(1)

pi,s = −
√

3âi, A
(0)
pi,pj = δij, A

(2)
pi,pj = δij − 3âiâj. For

table including d-orbitals, see Table A.6.

s px py pz

s A(0) = 1 A(1) = −
√

3âx A(1) = −
√

3ây A(1) = −
√

3âz

px A(1) =
√

3âx
A(0) = 1

A(2) = 1− 3â2
x

A(0) = 0

A(2) = −3âxây

A(0) = 0

A(2) = −3âxâz

py A(1) =
√

3ây
A(0) = 0

A(2) = −3âxây

A(0) = 1

A(2) = 1− 3â2
y

A(0) = 0

A(2) = −3âyâz

pz A(1) =
√

3âz
A(0) = 0

A(2) = −3âxâz

A(0) = 0

A(2) = −3âyâz

A(0) = 1

A(2) = 1− 3â2
z

Collecting the results, we visualize the overlaps between hydrogen 2s, 2px, 2py, and 2pz
wave functions on the x-y plane (Fig. 8.5). Many geometric properties of the orbitals are
reflected in the overlap pictures. For instance, consider 〈2s | 2px(a)〉 (Fig. 8.5b). If the
2px orbital is on the y-axis, the overlap is zero due to the symmetry (Fig. 8.4a), which is
described by

A(λ)
s,px(âx=0) = 0 (8.44)

Another example, consider 〈2px | 2px(a)〉 along the x direction (Fig. 8.5f). Due to the
oscillations of the two 2px wave functions, the overlap is positive if ax is small (Fig. 8.4b),
but negative if ax is large (Fig. 8.4c).

(a) 〈2s | 2px(ax=0)〉 (b) 〈2px | 2px(small ax)〉 (c) 〈2px | 2px(large ax)〉

Figure 8.4.: (a) 2s-2px on the y-axis (zero overlap due to symmetry); (b) 2px-2px on the
x-axis with small separation (positive overlap); (c) 2px-2px on the x-axis with
large separation (negative overlap).

160



8.4. Orbital overlap angular dependencies

-15 -10 -5 0 5 10 15

x

-15

-10

-5

0

5

10

15

y

(a) 〈2s | 2s(a)〉

-15 -10 -5 0 5 10 15

x

-15

-10

-5

0

5

10

15

y
(b) 〈2s | 2px(a)〉

-15 -10 -5 0 5 10 15

x

-15

-10

-5

0

5

10

15

y

(c) 〈2s | 2py(a)〉

-15 -10 -5 0 5 10 15

x

-15

-10

-5

0

5

10

15

y

(d) 〈2s | 2pz(a)〉
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Figure 8.5.: Overlaps between hydrogen 2s, 2px, 2py, and 2pz wave functions, visualized
on the ax-ay plane (az = 0). The lengths are given in units of Bohr radius.
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8. Orbital overlaps and basis orthonormalization

8.5. Basis orthonormalization

8.5.1. Generalized eigenvalue problem

To understand the eigenvalue problems under a non-orthogonal basis, we consider the
simplest two-site problem: the hydrogen molecule ion H+

2 , with the Hamiltonian,

H = −1

2
∇2 + V1 + V2 (8.45)

where V1 = − 1
|r| is the potential centered at the origin and V2 = − 1

|r−a| is the potential
centered at location a. The choice of basis set is the two 1s orbitals around the two nuclei:

|ϕ1〉 = |1s〉 and |ϕ2〉 = |1s(a)〉

The matrix representation of the Hamiltonian is

H =

[
〈ϕ1|H |ϕ1〉 〈ϕ1|H |ϕ2〉
〈ϕ2|H |ϕ1〉 〈ϕ2|H |ϕ2〉

]
=

[
X Y
Y X

]
(8.46)

From (2.4) and (9.22),

X = ε1s −
1

a
+

(
1 +

1

a

)
e−2a (8.47)

From (2.5), (8.33), and (9.20),

Y =
ε1s

3
(a2 + 3a+ 3)e−a − (a+ 1)e−a (8.48)

However, if we diagonalize the matrix H directly, we don’t get the correct eigen-energies.
The hidden problem is that the basis states |ϕ1〉 and |ϕ2〉 are not orthogonal. If we are
working with non-orthogonal basis states, the corresponding matrix form of the eigenvalue
problem is a generalized eigenvalue problem:

Hv = ESv (8.49)

where S is the overlap matrix

S =

[
〈ϕ1 |ϕ1〉 〈ϕ1 |ϕ2〉
〈ϕ2 |ϕ1〉 〈ϕ2 |ϕ2〉

]
=

[
1 s
s 1

]
(8.50)

The task is to solve the generalized eigenvalue problem:[
X Y
Y X

]
v = E

[
1 s
s 1

]
v (8.51)

Solving the matrix problem, we obtain the eigen-energies:

E =
X ± Y
1± s (8.52)

Eqn. (8.52) is the solution considering the basis non-orthogonality, which converges to
(2.7) and (2.8) if s is small.
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8.5.2. Löwdin symmetric orthogonalization

Choosing a non-orthogonal basis leads to solving a generalized eigenvalue problem. In
second quantization, working with a non-orthogonal basis can be extremely inconvenient
since [57],

{cα, c†β} = 〈α | β〉 6= δαβ (8.53)

An alternative approach to handle a non-orthogonal basis is to perform a basis orthonor-
malization. We are looking for a transformation

|⊥n〉 =
∑
m

|ϕm〉Tmn s.t. 〈⊥m | ⊥n〉 = δmn (8.54)

This implies,

〈⊥m | ⊥n〉 =
∑
ij

T †ni 〈ϕi |ϕj〉Tjm = (T †ST )nm = δnm

equivalently,
S−1 = TT† (8.55)

However, Eqn. (8.55) does not determine the transformation matrix T uniquely. Indeed,
there are various ways of performing basis orthonormalization, such as the Gram-Schmidt
process or the Cholesky decomposition. Here we are interested in the Löwdin symmetric
orthogonalization scheme, which has the advantage that the resulting orthonormal basis
has the minimum deformation (see Fig: 8.7 and Fig: 8.8) from the original basis. Thus
the original atomic features are kept as much as possible. The transformation matrix has
a simple form [47]:

T = S−
1
2 (8.56)

If we perform the Löwdin symmetric orthogonalization scheme on the H+
2 system, we

obtain,

T =

[
1 s
s 1

]− 1
2

=
1

2

[
1√
1+s

+ 1√
1−s

1√
1+s
− 1√

1−s
1√
1+s
− 1√

1−s
1√
1+s

+ 1√
1−s

]
=

[
c1 c2

c2 c1

]
(8.57)

The two orthonormalized states are

|⊥1〉 = c1 |ϕ1〉+ c2 |ϕ2〉 (8.58)

|⊥2〉 = c2 |ϕ1〉+ c1 |ϕ2〉 (8.59)

Under the new basis, the Hamiltonian is,

H⊥ =

[
〈⊥1|H |⊥1〉 〈⊥1|H |⊥2〉
〈⊥2|H |⊥1〉 〈⊥2|H |⊥2〉

]
=

[
A B
B A

]
(8.60)

In fact,
H⊥ = T†HϕT (8.61)

Now,

H⊥ =

[
(c2

1 + c2
2)X + 2c1c2Y (c2

1 + c2
2)Y + 2c1c2X

(c2
1 + c2

2)Y + 2c1c2X (c2
1 + c2

2)X + 2c1c2Y

]
(8.62)
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Solving the ordinary eigenvalue problem:

H⊥v = Ev (8.63)

yields eigen-energies:

E = A±B = (c1 ± c2)2(X ± Y ) =
X ± Y
1± s (8.64)

which agree with the results in (8.52) from the generalized eigenvalue problem. Notice
that the basis orthonormalization is not a unitary transformation, as obviously the inner
products are not preserved. The necessity of the basis orthonormalization can be un-
derstood from the following: Fig. 8.6 plots the eigen-energies of the hydrogen molecule
ion system (plus the proton-proton potential energy 1/a) obtained by (Fig. 8.6a) diag-
onalizing the matrix representation Hϕ under the original non-orthogonal atomic basis
without the overlap matrix; (Fig. 8.6b) diagonalizing the matrix representation H⊥ under
the orthogonalized basis. The bond length of the system is properly described under the
orthogonalized basis.

(a) Atomic basis (non-orthogonal) (b) Orthogonalized basis

Figure 8.6.: Eigen-energies of the hydrogen molecule ion system obtained from (a) di-
agonalizing the matrix representation Hϕ under the original non-orthogonal
atomic basis without the overlap matrix; (b) diagonalizing the matrix repre-
sentation H⊥ under the orthogonalized basis. The bond length of the system
is properly described under the orthogonalized basis.
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8.5. Basis orthonormalization

(a) a = 10 a0 sϕ = 0.002 s⊥ = 0

(b) a = 5 a0 sϕ = 0.097 s⊥ = 0

(c) a = 3 a0 sϕ = 0.349 s⊥ = 0

(d) a = 1 a0 sϕ = 0.858 s⊥ = 0

Figure 8.7.: Deformation of two hydrogen 1s orbitals under the Löwdin transformations.
First column: plots of the two orthonormalized radial wave functions; Right
two columns: isosurface plots of the two orthonormalized wave functions. The
isosurfaces are generated by a visualization program developed by Khaldoon
Ghanem during the JSC Guest Student Programme 2012.
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Figure 8.8.: Isosurface plots of the orthonormalized orbitals of a six-site 1s ring-system
with neighboring distance a = 2 a0.
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9. Re-centering method and
multi-center matrix elements

9.1. Re-centering method

In the previous chapter, we performed the overlap integrals by transforming the two atomic
wave functions into plane waves. That was perhaps the simplest approach to understand
and to solve the overlap problems. In this chapter, we consider more general integrals
that involve multi-center spherical functions. It is more convenient to view the problems
from a re-centering perspective. We solve a multi-center integral by the following steps,

1. Expand each off-centered spherical functions into off-centered spherical waves;

2. Expand each off-centered spherical waves into centered spherical waves;

3. Integrate over the centered spherical waves.

Apparently, the second step is the key where the “re-centering” takes place. The task is
to expand an off-centered spherical wave |kα(a)〉 in terms of (a lot of) centered spherical
waves |k′α′〉:

|kα(a)〉 =

∫ ∞
0

dk′
∑
α′

|k′α′〉 〈k′α′ | kα(a)〉

=

∫ ∞
0

dk′
∑
α′

|k′α′〉 〈k′α′|
(∫

dk′′ |k′′〉 〈k′′|
)
|kα(a)〉

=

∫ ∞
0

dk′
∑
α′

∫
dk′′ |k′α′〉 〈k′α′ |k′′〉 〈k′′ | kα(a)〉 (9.1)

Recall (8.11), we have,

〈k′α′ |k′′〉 =
ilα′

k′
Yα′(k̂′′)δ(k

′ − k′′) (9.2)

〈k′′ | kα(a)〉 =
i−lα

k
Yα(k̂′′)δ(k − k′′)e−ik′′·a (9.3)
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9. Re-centering method and multi-center matrix elements

Thus,

|kα(a)〉 =
∑
α′

ilα′−lα
∫
dk̂ Yα′(k̂)Yα(k̂)e−ik·a |kα′〉

=
∑
α′

ilα′−lα
∫
dk̂ Yα′(k̂)Yα(k̂)

[
4π

∞∑
λ=0

i−λjλ(ka)
λ∑

µ=−λ

Yλµ(k̂)Yλµ(â)

]
|kα′〉

= 4π
∑
α′

∑
λµ

ilα′−lα−λ 〈α′|λµ |α〉 jλ(ka)Yλµ(â) |kα′〉 (9.4)

In a compact notation, we write down the re-centering formula:

|kα(a)〉 =
∑
α′

gα′α(ka) |kα′〉 (9.5)

where,

gα′α(ka) ≡ 4π
∑
λµ

ilα′−lα−λ 〈α′|λµ |α〉 jλ(ka)Yλµ(â) (9.6)

The indices λ and µ run for non-trivial Gaunt coefficients (7.4) and (7.3).

It is quite interesting to think on the re-centering formula (9.5): keep adding spherical
waves centered at the origin, you eventually recover a spherical wave centered at location
a. How is that possible? To understand how the re-centering formula works, we consider
a simple l = 0 spherical wave with a displacement on the z-axis (a = aẑ).

|ks(aẑ)〉 =
∑
l′m′

gl′m′,s(kaẑ) |kl′m′〉 (9.7)

where,

gl′m′,s(kaẑ) = 4π 〈l′m′| l′m′ |s〉︸ ︷︷ ︸
1√
4π

jl′(ka) Yl′m′(ẑ)︸ ︷︷ ︸√
2l′+1
4π

δm′0

=
√

2l′ + 1jl′(ka)δm′0 (9.8)

Hence,

|ks(aẑ)〉 =
∞∑
l′=0

√
2l′ + 1jl′(ka) |kl′0〉 (9.9)

To construct a shifted |ks(aẑ)〉, we add up many centered |kl′0〉 with the corresponding
weights. But, to a good approximation, how many centered waves do we need to recover
the shifted wave? Fig. 9.1 visualizes the results from adding up 5, 10, 15, and 20 waves.
With the increasing number of centered waves, the sum recovers a clearer shifted wave.

To understand the cut-off problem quantitatively, we sum up l′ from 0 to lcut and check
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Figure 9.1.: Recovering an off-centered spherical wave, by accumulating centered spherical
waves.

the overlap between |ks(aẑ)〉cut and the exact |ks(aẑ)〉.

cut〈ks(aẑ) | ks(aẑ)〉 =
lcut∑
l′=0

∞∑
l′′=0

√
(2l′ + 1)(2l′′ + 1)jl′(ka)jl′′(ka) 〈kl′0 | kl′′0〉︸ ︷︷ ︸

δ(0) δl′l′′

= δ(0)
lcut∑
l′=0

(2l′ + 1)j2
l′(ka) (9.10)

The problem reduces to finding lcut such that

1−
lcut∑
l′=0

(2l′ + 1)j2
l′(ka) ≤ tol (9.11)

This well defines the number of centered spherical waves required to reconstruct a decent
shifted wave. It should be rather intuitive that the further the off-centering is, the larger
lcut is required. With tol = 10−8, Fig. 9.2 plots the lcut required against displacement,
which shows a nice linear behavior. For a displacement of ka = 5π, we need lcut = 25.

In general, we consider re-centering an arbitrary spherical wave with displacement in the
ẑ direction.

|klm(aẑ)〉 =
∑
l′m′

gl′m′,lm(kaẑ) |kl′m′〉

=
√

4π
∞∑
l′=0

∑
λ

il
′−l−λjλ(ka)

√
2λ+ 1 〈l′m|λ0 |lm〉 |kl′m〉 (9.12)
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Figure 9.2.: (a) Off-centered s spherical wave with displacement ka = 5π in the ẑ direc-
tion, reconstructed by centered spherical waves with lcut = 25. (b) lcut for
decent wave recentering (tol = 10−8).

Now, we consider the overlap with cut-off:

cut〈klm(aẑ) | klm(aẑ)〉 = 4π
lcut∑
l′=0

∞∑
l′′=0

∑
λ′λ′′

i−l
′+λ′+l′′−λ′′jλ′(ka)jλ′′(ka)√

(2λ′ + 1)(2λ′′ + 1) 〈l′m|λ′0 |lm〉 〈l′′m|λ′′0 |lm〉 〈kl′m | kl′′m〉

= δ(0)4π
lcut∑
l′=0

∑
λ′λ′′

iλ
′−λ′′jλ′(ka)jλ′′(ka)√

(2λ′ + 1)(2λ′′ + 1) 〈l′m|λ′0 |lm〉 〈l′m|λ′′0 |lm〉 (9.13)

The problem reduces to finding lcut such that

1− 4π
lcut∑
l′=0

∑
λ′λ′′

iλ
′−λ′′jλ′(ka)jλ′′(ka)

√
(2λ′ + 1)(2λ′′ + 1) 〈l′m|λ′0 |lm〉 〈l′m|λ′′0 |lm〉 ≤ tol

(9.14)
Condition (9.14) is a generalization of (9.11) for re-centering arbitrary spherical waves.
For different l’s and m’s, lcut are plotted in Fig. 9.3 with tol = 10−8. We discovered
that the lcut for spherical waves with quantum number l,m is almost the same as the s
spherical wave but with a constant shift l (there is a weak dependence on m, but m = 0
always give a safer estimation):

l
(l,m)
cut = l

(0)
cut + l (9.15)

where l
(0)
cut is given by Eqn. (9.11).
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Figure 9.3.: (a) lcut for decent s, p, d, and f wave recentering (tol = 10−8). (b) Zoom in
plot shows the constant l-shift originates from the beginning.

9.2. Overlap problem revisited

We can derive the overlap formula (8.29) from the re-centering formula (9.5) in a compact
way. Here we reproduce the overlap integral from the re-centering perspective instead of
the plane wave expansion.

First, we expand the off-centered atomic orbital in terms of off-centered spherical waves
(8.25):

|β(a)〉 =

∫ ∞
0

dk kIβ(k) |kβ(a)〉 (9.16)

Next, we re-center the spherical waves (9.5):

|β(a)〉 =

∫ ∞
0

dk kIβ(k)
∑
β′

gβ′β(ka) |kβ′〉 (9.17)

The overlap reads,

〈α | β(a)〉 =

∫ ∞
0

dk kIβ(k)
∑
β′

gβ′β(ka) 〈α | kβ′〉︸ ︷︷ ︸
kIα(k)δαβ′

=

∫ ∞
0

dk k2Iα(k)Iβ(k)gαβ(ka) (9.18)

which recovers Eqn. (8.29) in a very compact way.
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9.3. Hopping matrix elements

In general, a hopping matrix element is a three-center integral,

〈α(a)|V |β(b)〉

Here, we consider three simplified versions of the hopping elements:

h
(1)
αβ(a) = 〈α| 1

r
|β(a)〉

h
(2)
αβ(a) = 〈α(a)| 1

r
|β(a)〉

hs1s2(a,b) = 〈s1(a)| 1
r
|s2(b)〉

Element h
(1)
αβ appeared in (2.5). In this case, orbital-α and the potential 1

r
are centered at

the same site. This two-center integral is actually identical to the overlap integral up to
a rescaling,

h
(1)
αβ(a) = 〈α̃ | β(a)〉 where ϕ̃α(r) =

ϕα(r)

r
(9.19)

Consider the hydrogen 1s orbital (α = β = H1s). h
(1)
1s is analogous to (8.33),

h
(1)
1s (a) =

〈
1̃s
∣∣∣ 1s(a)

〉
=

∫ ∞
0

dk k2I1̃s(k)I1s(k)j0(ka) = (a+ 1)e−a (9.20)

Element h
(2)
αβ appeared in (2.4). In this case, orbitals α and β are on one site but the

potential is centered on another site. We solve this integral by translating the coordinates
and using the multipole expansion (4.11),

h
(2)
αβ(a) = 〈α| 1

|r + a| |β〉

= 〈α|
∑
λµ

4π

2λ+ 1

rλ<
rλ+1
>

Yλµ(r̂)Yλµ(−â) |β〉

=
∑
λµ

4π

2λ+ 1
〈Rα|

rλ<
rλ+1
>

|Rβ〉 〈Yα|Yλµ |Yβ〉Yλµ(−â) (9.21)

Consider α = β = H1s. The sum indices collapse to λ = µ = 0,

h
(2)
1s (a) = 〈R1s|

1

r>
|R1s〉 =

∫ a

0

dr
1

a
|u1s|2 +

∫ ∞
a

dr
1

r
|u1s|2 =

1

a
−
(

1 +
1

a

)
e−2a (9.22)

Note that h
(1)
αβ and h

(2)
αβ elements have different decaying behaviors: h

(1)
αβ decays exponen-

tially with the separation due to the overlap decay; but h
(2)
αβ drops proportional to the

distance inverse which is the decaying of the off-site potential.
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Figure 9.4.: Configuration of the matrix element hs1s2(a,b) = 〈s1(a)| 1
r
|s2(b)〉.

Element hs1s2 is a general three-center integral for spherically symmetric orbitals, namely,
the s-orbitals. The physical picture of the matrix element is shown in Fig. 9.4. To solve
this general three-center integral, we use the re-centering formula to bring the off-centered
orbitals back to the origin:

hs1s2(a,b) =

∫
dk

∫
dk′ kk′Is1(k)Is2(k

′)
∑
lm,l′m′

glm,s(ka)gl′m′,s(k
′b) 〈klm| 1

r
|k′l′m′〉

(9.23)
where (from (8.24) and (9.6)),

Iα(k) =

√
2

π

∫ ∞
0

dr r2j0(kr)Rα(r) (9.24)

glm,s(ka) = 4π 〈lm| lm |s〉 jl(ka)Ylm(â) =
√

4πjl(ka)Ylm(â) (9.25)

and the “centered” integral,

〈klm| 1
r
|k′l′m′〉 = 〈Rkl|

1

r
|Rk′l′〉 〈Ylm |Yl′m′〉 = 〈Rkl|

1

r
|Rk′l′〉 δll′δmm′ (9.26)

where Rkl(r) =
√

2
π
kjl(kr) is the radial part of the spherical wave. Collecting the results,
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(9.23) becomes,

hs1s2(a,b) =

∫
dk

∫
dk′ kk′Is1(k)Is2(k

′)
∑
l

jl(ka)jl(k
′b) 〈Rkl|

1

r
|Rk′l〉 4π

∑
m

Ylm(â)Ylm(b̂)︸ ︷︷ ︸
(2l+1)Pl(â·b̂)

=
∑
l

(2l + 1)

∫
dk

∫
dk′ kk′Is1(k)Is2(k

′)jl(ka)jl(k
′b) 〈Rkl|

1

r
|Rk′l〉Pl(â · b̂)

=
∞∑
l=0

(2l + 1)
〈
J (l)
s1

(r, a)
∣∣ 1

r

∣∣J (l)
s2

(r, b)
〉
Pl(â · b̂) (9.27)

where we define the transformed radial function,

J (l)
α (r, a) ≡

√
2

π

∫ ∞
0

dk k2Iα(k)jl(kr)jl(ka) (9.28)

Evaluating the transformed functions J
(l)
α is numerically straightforward (1-dimensional

integral over k), but analytically challenging, as the integrals involve combinations of
general spherical Bessel functions and radial wave functions with various forms. Here we
use the hydrogen 1s-orbital as an example, and try to work out the J

(l)
1s analytically.

We have worked out I1s(k) in Eqn. (8.32). Now, our task is to evaluate the integral of
the form:

J
(l)
1s (r1, r2) =

8

π

∫ ∞
0

dk
k2

(k2 + 1)2
jl(r1k)jl(r2k) (9.29)

To work out (9.29), we use the contour integration method. Note the integrand has poles
(of order 2) at ±i.

k2

(k2 + 1)2
=

k2

(k + i)2(k − i)2
(9.30)

We first realize that the integrand is symmetric about k (DLMF 10.47.14) [54]. This helps
us to make the contour integral possible.∫ ∞

0

dk =
1

2

∫ +∞

−∞
dk

Notice that r1 and r2 are exchangeably symmetric J
(l)
1s (r1, r2) = J

(l)
1s (r2, r1) = J

(l)
1s (r>, r<),

where r> = max(r1, r2) and r< = min(r1, r2). We can write,

J
(l)
1s (r1, r2) =

4

π

∫ +∞

−∞
dk

k2

(k + i)2(k − i)2
jl(r>k)jl(r<k) (9.31)

To perform the real-axis integration using the “contour trick”, we must let the integrand
vanish at infinity on the imaginary-axis. We achieve this by expressing the jl(r>k) term
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as 1
2
[h

(1)
l (r>k) + h

(2)
l (r>k)] (DLMF 10.47.10), where h

(1)
l and h

(2)
l are the spherical Hankel

functions of the first and second kinds, respectively [54].

J
(l)
1s (r1, r2) =

2

π

∫ +∞

−∞
dk

k2

(k + i)2(k − i)2

[
h

(1)
l (r>k)jl(r<k) + h

(2)
l (r>k)jl(r<k)

]
(9.32)

Using the reflection formulas jl(−z) = (−1)ljl(z) (DLMF 10.47.14) and h
(1)
l (−z) =

(−1)lh
(2)
l (z) (DLMF 10.47.15) [54], we can combine the two terms.

J
(l)
1s (r1, r2) =

4

π

∫ +∞

−∞
dk

k2

(k + i)2(k − i)2
h

(1)
l (r>k)jl(r<k) (9.33)

We are ready to perform the contour integral as the integrand has the proper asymptotic
behavior for k →∞ (DLMF 10.52.4) [54],

h
(1)
l (r>k)jl(r<k) ∼ ei(r>+r<)k + ei(r>−r<)k (9.34)

As a consequence, we can take an infinitely large upper semi-circle as our contour, where
the contribution on the upper arc vanishes. Therefore, we should solve the following
contour integral problem.

Re(k)

Im(k)

C

i

J
(l)
1s (r1, r2) =

4

π

∮
C

dk
k2

(k + i)2(k − i)2
h

(1)
l (r>k)jl(r<k) (9.35)

Inside the contour C, the integrand has one pole (of order 2) at k = i. The residual is,

Resk=i =
d

dk

[
k2

(k + i)2
h

(1)
l (r>k)jl(r<k)

]
k=i

= − i
4
h

(1)
l (r>i)jl(r<i) +

r>
4
h

(1)′
l (r>i)jl(r<i) +

r<
4
h

(1)
l (r>i)j

′
l(r<i) (9.36)

To get rid of the first-order derivative terms, we employ the recursion relation f ′l (z) =
l
z
fl(z)− fl+1(z) (DLMF 10.51.2) [54],

Resk=i = − i
4
h
(1)
l (r>i)jl(r<i) +

r>
4

[
l

r>i
h
(1)
l (r>i)− h(1)l+1(r>i)

]
jl(r<i) +

r<
4
h
(1)
l (r>i)

[
l

r<i
jl(r<i)− jl+1(r<i)

]
= − (2l + 1)i

4
h
(1)
l (r>i)jl(r<i)−

r>
4
h
(1)
l+1(r>i)jl(r<i)−

r<
4
h
(1)
l (r>i)jl+1(r<i) (9.37)
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9. Re-centering method and multi-center matrix elements

We can transform the imaginary arguments to real by{
jl(iz) = ili

(1)
l (z) (DLMF 10.47.12)

h
(1)
l (iz) = − 2

π
i−lkl(z) (DLMF 10.47.13)

where i
(1)
l (z) and kl(z) are the modified spherical Bessel functions [54].

The contour integral is given by the residue theorem [58]:

(2πi)Resk=i = −(2l + 1)kl(r>)i
(1)
l (r<) + r>kl+1(r>)i

(1)
l (r<)− r<kl(r>)i

(1)
l+1(r<)

= −
[
(2l + 1)kl(r>)− r>kl+1(r>)

]︸ ︷︷ ︸
r>kl−1(r>) (DLMF 10.51.4)

i
(1)
l (r<)− r<kl(r>)i

(1)
l+1(r<)

= r>kl−1(r>)i
(1)
l (r<)− r<kl(r>)i

(1)
l+1(r<) (9.38)

Finally,

J
(l)
1s (r1, r2) =

4

π

[
r>kl−1(r>)i

(1)
l (r<)− r<kl(r>)i

(1)
l+1(r<)

]
(9.39)

Algorithm 9.1 provides an example routine for computing h1s(a,b) (9.27). To be consis-
tent with our earlier discussions, we perform the radial integrations numerically on the
logarithmic grid (3.12).

Algorithm 9.1: Routines for computing h1s(a,b).
1 import math

2 import numpy as np

3 import scipy.integrate as sp

4 from scipy.special import spherical_in , spherical_kn , eval_legendre

5
6 def J1s(l, r, a): # Explicit J1s expression for hydrogen 1s orbital

7 (rL , rG) = (np.fmin(r, a), np.fmax(r, a))

8 A = rG * spherical_kn(max(l-1,0), rG) * spherical_in(l, rL)

9 B = rL * spherical_kn(l, rG) * spherical_in(l+1, rL)

10 J = 4/math.pi * (A - B)

11 return J

12
13 # Matrix element <1s(a)| 1/r |1s(b)>

14 def h1s(a, b, cosTheta ):

15 # Logarithmic grid for the radial integrals

16 (rmin , rmax , dx) = (1e-6, 50, 0.005)

17 r = np.exp(np.arange(math.log(rmin), math.log(rmax), dx))

18
19 # Sum of the radial integrals <Ja|1/r|Jb> = int dr r Ja Jb = int dx r^2 Ja Jb

20 res = 0

21 for l in range (100):

22 Ja = J1s(l, r, a)

23 Jb = J1s(l, r, b)

24 I = (2*l+1) * sp.simps(r**2*Ja*Jb , dx=dx)

25 res += I * eval_legendre(l, cosTheta)

26 if abs(I)<1e-6:

27 break

28 return res
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9.4. Long-range Coulomb matrix elements

In this section, we consider the Coulomb elements with off-centers:

(α(a) β(b)| 1

r12

|γ(c) δ(d)) where
1

r12

=
1

|r1 − r2|
(9.40)

It must be pointed out that, it is already difficult enough to compute a general on-site
Coulomb matrix element (see Eqn. (4.10)):

U
(0)
αβγδ = (αβ| 1

r12

|γδ)

To work with the additional off-centering, here we simplify our discussion on spherically
symmetric orbitals. We consider the three types:

U (1)
s1s2

(a) = (s1s2(a)| 1

r12

|s1s1)

U (d)
s1s2

(a) = (s1s2(a)| 1

r12

|s2(a)s1)

U (x)
s1s2

(a) = (s1s2(a)| 1

r12

|s1s2(a))

All the three involve two s-orbitals, s1 centered at the origin and s2 centered at a. U
(1)
s1s2 has

only one off-center; U
(d)
s1s2 , where d stands for direct, is a typical direct Coulomb integral;

U
(x)
s1s2 , where x stands for exchange, is a typical exchange Coulomb integral. Since the spin-

integrals are trivial in the Coulomb elements (4.10), we discuss only the spatial-integrals
in this section.

First, we perform the spherical wave expansions (8.25) and the re-centerings (9.5):

U (1)
s1s2

(a) =

∫
dk kIs2(k)

∑
lm

glm,s(ka)(s1, klm|
1

r12

|s1s1) (9.41)

U (d)
s1s2

(a) =

∫
dk

∫
dk′ kk′Is2(k)Is2(k

′)
∑
lm,l′m′

glm,s(ka)gl′m′,s(k
′a)(s1, klm|

1

r12

|k′l′m′, s1)

(9.42)

U (x)
s1s2

(a) =

∫
dk

∫
dk′ kk′Is2(k)Is2(k

′)
∑
lm,l′m′

glm,s(ka)gl′m′,s(k
′a)(s1, klm|

1

r12

|s1, k
′l′m′)

(9.43)

where (from (8.24) and (9.6)),

Is2(k) =

√
2

π

∫ ∞
0

dr r2j0(kr)Rs2(r) (9.44)

glm,s(ka) = 4π 〈lm| lm |s〉 jl(ka)Ylm(â) =
√

4πjl(ka)Ylm(â) (9.45)
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However, since we are working with spherically symmetric orbitals, the Coulomb integral
does not dependent on the direction vector â. We can orient the coordinates such that â
points to the z-direction, thus the re-centering coefficient simplifies as in (9.8),

glm,s(ka) =
√

2l + 1jl(ka)δm0 (9.46)

Next, we massage the centered Coulomb integrals using the multipole expansion (4.11):

(s1, kl0|
1

r12

|s1s1) =
∑
λµ

4π

2λ+ 1
(Rs1Rkl|

rλ<
rλ+1
>

|Rs1Rs1) 〈Ys|Yλµ |Ys〉 〈Yl0|Yλµ |Ys〉

= δl0(Rs1Rks|
1

r>
|Rs1Rs1) (9.47)

(s1, kl0|
1

r12

|k′l′0, s1) =
∑
λµ

4π

2λ+ 1
(Rs1Rkl|

rλ<
rλ+1
>

|Rk′l′Rs1) 〈Ys|Yλµ |Ys〉 〈Yl0|Yλµ |Yl′0〉

= δll′(Rs1Rkl|
1

r>
|Rk′lRs1) (9.48)

(s1, kl0|
1

r12

|s1, k
′l′0) =

∑
λµ

4π

2λ+ 1
(Rs1Rkl|

rλ<
rλ+1
>

|Rs1Rk′l′) 〈Ys|Yλµ |Yl′0〉 〈Yl0|Yλµ |Ys〉

=
δll′

2l + 1
(Rs1Rkl|

rl<
rl+1
>

|Rs1Rk′l) (9.49)

Collecting the results:

U (1)
s1s2

(a) =
(
Rs1J

(0)
s2

(r2, a)
∣∣ 1

r>

∣∣Rs1Rs1

)
(9.50)

U (d)
s1s2

(a) =
∞∑
l=0

(2l + 1)
(
Rs1J

(l)
s2

(r2, a)
∣∣ 1

r>

∣∣J (l)
s2

(r2, a)Rs1

)
(9.51)

U (x)
s1s2

(a) =
∞∑
l=0

(
Rs1J

(l)
s2

(r2, a)
∣∣ rl<
rl+1
>

∣∣Rs1J
(l)
s2

(r1, a)
)

(9.52)

where J
(l)
α is defined in (9.28). Thus, the 6-dimensional (r1 and r2) long-range Coulomb

integrals reduce to sums of 2-dimensional (r1 and r2) radial integrals.

As an example, we consider the hydrogen 1s orbital (s1 = s2 = H1s). We have worked

out J
(l)
1s in (9.39). Substituting J

(l)
1s and R1s back to (9.50), (9.51), and (9.52), we obtain
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the long-range Coulomb integrals explicitly:

U
(1)
1s (a) =

∫ ∞
0

dr2 r2J
(0)
1s (r2, a)u1s(r2)

∫ ∞
0

dr1 u
2
1s(r1)

1

r>

=

∫ ∞
0

dr2 r2J
(0)
1s (r2, a)u1s(r2)

(∫ r2

0

dr1
u2

1s(r1)

r2

+

∫ ∞
r2

dr1
u2

1s(r1)

r1

)
=

∫ ∞
0

dr2 r2J
(0)
1s (r2, a)u1s(r2)

(
1− (r2 + 1)e−2r2

r2

)
=

∫ ∞
0

dr J
(0)
1s (r, a)

[
2re−r − 2(r2 + r)e−3r

]
=

4

π

∫ a

0

dr
[
ak−1(a)i

(1)
0 (r)− rk0(a)i

(1)
1 (r)

] [
2re−r − 2(r2 + r)e−3r

]
+

4

π

∫ ∞
a

dr
[
rk−1(r)i

(1)
0 (a)− ak0(r)i

(1)
1 (a)

] [
2re−r − 2(r2 + r)e−3r

]
(9.53)

From (DLMF 10.49.9), (DLMF 10.49.13), and (DLMF 10.47.9) [54],

i
(1)
0 (z) =

sinh z

z
, i

(1)
1 (z) = −sinh z

z2
+

cosh z

z
, k−1(z) = k0(z) =

π

2

e−z

z
(9.54)

We obtain the explicit result,

U
(1)
1s (a) = ae−a +

(
1

8
+

5

16a

)(
e−a − e−3a

)
(9.55)

U
(d)
1s reduces to a sum of 1-dimensional radial integrals,

U
(d)
1s (a) =

∞∑
l=0

(2l + 1)

∫ ∞
0

dr2 r
2
2|J (l)

1s (r2, a)|2
∫ ∞

0

dr1 u
2
1s(r1)

1

r>

=
∞∑
l=0

(2l + 1)

∫ ∞
0

dr2 r
2
2 |J (l)

1s (r2, a)|2
(

1− (r2 + 1)e−2r2

r2

)
=
∞∑
l=0

(2l + 1)
〈
J

(l)
1s (r, a)

∣∣∣ 1− (r + 1)e−2r

r

∣∣∣J (l)
1s (r, a)

〉
(9.56)

Algorithm 9.2 provides example routines for computing U
(d)
1s (a) and U

(x)
1s (a). To be consis-

tent with our earlier discussions, we compute the integrals numerically on the logarithmic
grid (3.12). We re-use the cumsimps function defined in Algorithm 3.6.

Algorithm 9.2: Routines for computing U
(d)
1s (a) and U

(x)
1s (a). The cumsimps function is

defined in Algorithm 3.6 and the J1s function is given in Algorithm 9.1.
1 import math

2 import numpy as np

3 import scipy.integrate as sp

4
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9. Re-centering method and multi-center matrix elements

5 def U1s_d(a):

6 # Logarithmic grid for the radial integrals (dr = r*dx)

7 (rmin , rmax , dx) = (1e-6, 50, 0.005)

8 r = np.exp(np.arange(math.log(rmin), math.log(rmax), dx))

9 F = r**2 * (1-(r+1)*np.exp(-2*r)) # F = r**3 * f

10
11 # Sum of radial integrals <J|f|J> = int dr r**2 f J^2 = int dx r**3 f J^2

12 res = 0

13 for l in range (100):

14 J = J1s(l, r, a)

15 I = (2*l+1) * sp.simps(J**2*F, dx=dx)

16 res += I

17 if abs(I)<1e-6:

18 break

19 return res

20
21 def U1s_x(a):

22 # Logarithmic grid for the radial integrals (dr = r*dx)

23 (rmin , rmax , dx) = (1e-6, 50, 0.005)

24 r = np.exp(np.arange(math.log(rmin), math.log(rmax), dx))

25 F = r**3 * 2*np.exp(-r) # F = r**3 * R

26
27 # Sum of radial integrals (R,J|r<^l/r>^{l+1}|R,J)

28 res = 0

29 for l in range (100):

30 J = J1s(l, r, a)

31 A = cumsimps( J*F*r**l, dx)

32 B = cumsimps ((J*F/r**(l+1))[:: -1] , dx)[:: -1]

33 I = sp.simps( J*F*(A/r**(l+1)+B*r**l), dx=dx)

34 res += I

35 if abs(I)<1e-6:

36 break

37 return res

At this stage, we summarize the multi-center integrals including, overlap, hopping, and
Coulomb elements, in Table 9.1. In particular, the multi-center elements for hydrogen
1s-orbitals are summarized in Table 9.2. The corresponding plots are shown in Fig. 9.5.

(a) Overlap (b) Hopping (c) Coulomb

Figure 9.5.: Multi-center (overlap, hopping, Coulomb) integrals for hydrogen 1s-orbitals.
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9.4. Long-range Coulomb matrix elements

Table 9.1.: Multi-center (overlap, hopping, Coulomb) integrals.

Iα(k) ≡
√

2

π

∫ ∞
0

dr r2jlα(kr)Rα(r)

Iα̃(k) =

√
2

π

∫ ∞
0

dr rjlα(kr)Rα(r)

gαβ(ka) ≡ 4π
∑
lm

ilα−lβ−l 〈Yα|Ylm |Yβ〉 jl(ka)Ylm(â)

J (l)
α (r, a) ≡

√
2

π

∫ ∞
0

dk k2Iα(k)jl(kr)jl(ka)

S
(0)
αβ = 〈α |β〉

S
(1)
αβ (a) = 〈α |β(a)〉 =

∫ ∞
0

dk k2Iα(k)Iβ(k)gαβ(ka)

h
(0)
αβ = 〈α| 1

r
|β〉

h
(1)
αβ(a) = 〈α| 1

r
|β(a)〉 =

∫ ∞
0

dk k2Iα̃(k)Iβ(k)gαβ(ka)

h
(2)
αβ(a) = 〈α(a)| 1

r
|β(a)〉 =

∞∑
l=0

4π

2l + 1
〈Rα|

rl<
rl+1
>

|Rβ〉
l∑

m=−l

〈Yα|Ylm |Yβ〉Ylm(−â)

hs1s2(a,b) = 〈s1(a)| 1
r
|s2(b)〉 =

∞∑
l=0

(2l + 1)
〈
J (l)
s1 (r, a)

∣∣∣ 1

r

∣∣∣J (l)
s2 (r, b)

〉
Pl(â · b̂)

U
(0)
αβγδ = (αβ| 1

r12
|γδ)

U (1)
s1s2(a) = (s1s2(a)| 1

r12
|s1s1) =

(
Rs1J

(0)
s2 (r2, a)

∣∣∣ 1

r>

∣∣∣Rs1Rs1)
U (d)
s1s2(a) = (s1s2(a)| 1

r12
|s2(a)s1) =

∞∑
l=0

(2l + 1)
(
Rs1J

(l)
s2 (r2, a)

∣∣∣ 1

r>

∣∣∣J (l)
s2 (r2, a)Rs1

)
U (x)
s1s2(a) = (s1s2(a)| 1

r12
|s1s2(a)) =

∞∑
l=0

(
Rs1J

(l)
s2 (r2, a)

∣∣∣ rl<
rl+1
>

∣∣∣Rs1J (l)
s2 (r1, a)

)
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9. Re-centering method and multi-center matrix elements

Table 9.2.: Multi-center integrals in Table 9.1 applied on hydrogen 1s-orbitals.

J
(l)
1s (r, a) =

4

π

[
r>kl−1(r>)i

(1)
l (r<)− r<kl(r>)i

(1)
l+1(r<)

]
S
(0)
1s = 1

S
(1)
1s (a) =

1

3
(a2 + 3a+ 3)e−a

h
(0)
1s = 1

h
(1)
1s (a) = (a+ 1)e−a

h
(2)
1s (a) =

1

a
−
(

1 +
1

a

)
e−2a

h1s(a,b) =

∞∑
l=0

(2l + 1)
〈
J
(l)
1s (r, a)

∣∣∣ 1

r

∣∣∣J (l)
1s (r, b)

〉
Pl(â · b̂)

U
(0)
1s =

5

8

U
(1)
1s (a) = ae−a +

(
1

8
+

5

16a

)(
e−a − e−3a

)
U

(d)
1s (a) =

∞∑
l=0

(2l + 1)
〈
J
(l)
1s (r, a)

∣∣∣ 1− (r + 1)e−2r

r

∣∣∣J (l)
1s (r, a)

〉
U

(x)
1s (a) =

∞∑
l=0

(
R1sJ

(l)
1s (r2, a)

∣∣∣ rl<
rl+1
>

∣∣∣R1sJ
(l)
1s (r1, a)

)
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9.5. Basis orthonormalization effects on the matrix elements

9.5. Basis orthonormalization effects on the matrix
elements

The general one- and two- body Hamiltonians (1.15) in their second quantization forms are
most convenient to work with if the chosen basis is orthonormal. In this section, we assume
that the given basis is atomic (non-orthogonal), and we are interested in understanding
the modifications on the matrix elements after the basis orthonormalization is performed.

Suppose we are given the one- and two- body matrix elements in an atomic basis:

hϕij and vϕijkl

Meanwhile, the basis orthonormalization is given by the linear transformation:

|⊥α〉 =
∑
i

|ϕi〉Tiα

Under the basis transformation, the matrix elements are transformed accordingly. For
instance, consider the two transformed orbitals (8.58) and (8.59). We have,

〈⊥1|
1

r
|⊥2〉 =

(
c1 〈ϕ1|+ c2 〈ϕ2|

)1

r

(
c2 |ϕ1〉+ c1 |ϕ2〉

)
= c1c2 〈ϕ1|

1

r
|ϕ1〉+ c2

1 〈ϕ1|
1

r
|ϕ2〉+ c2

2 〈ϕ2|
1

r
|ϕ1〉+ c2c1 〈ϕ2|

1

r
|ϕ2〉

In general, the transformations of the matrix elements under the two basis can be obtained
by [6],

h⊥αβ =
∑
ij

T †αih
ϕ
ijTjβ (9.57)

v⊥αβγδ =
∑
ijkl

T †αiT
†
βjv

ϕ
ijklTkγTlδ (9.58)

An example code for transforming one-body and two-body elements is given in Algo-
rithm 9.3.

Algorithm 9.3: Basis transformations of matrix elements.
1 import numpy as np

2
3 # Basis transformation of a one -body matrix

4 def ThT(h, T):

5 return T.conj (). transpose () @ h @ T

6
7 # Basis transformation of a two -body tensor

8 def TTvTT(v, T):

9 Th = T.conj (). transpose ()

10 vt = np.zeros_like(v)

11
12 orbs = range(len(T))

13 idx = [(a,b,c,d) for a in orbs for b in orbs for c in orbs for d in orbs]

14 for (a,b,c,d) in idx:

15 for (i,j,k,l) in idx:

16 vt[a,b,c,d] += Th[a,i]*Th[b,j]*v[i,j,k,l]*T[k,c]*T[l,d]

17 return vt
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9. Re-centering method and multi-center matrix elements

The main interest in the section is to understand the modification on the matrix elements
due to the deformation of the orbitals. We first study the multi-center matrix elements
of the two-site model consisting of two hydrogen 1s-orbitals under the original atomic
basis and the Löwdin orthogonalized basis. The resulting matrix elements are plotted in
Fig. 9.6. The dashed lines (copied from Fig. 9.5) are the matrix elements under the original
atomic basis; The solid lines are the matrix elements under the Löwdin orthogonalized
basis.

(a) Overlap (b) Hopping (c) Coulomb

Figure 9.6.: Transformed multi-center (overlap, hopping, Coulomb) integrals of a two-site
system consisting of two hydrogen 1s-orbitals. The dashed lines (copied from
Fig. 9.5) are the matrix elements under the original atomic basis; The solid
lines are the matrix elements under the Löwdin orthogonalized basis.

Fig. 9.6a shows the orbital overlaps. After the orthonormalization, the on-site overlap
stays at 1 (normalized) and the off-site overlap becomes 0 (orthogonalized).

Fig. 9.6b plots the hopping elements. After the orthonormalization, the biggest change
is on the element h(1), which almost vanishes. The element h(1) = 〈α| 1

r
|β(a)〉 is closely

related to the overlap S(1) = 〈α | β(a)〉. They both decay exponentially as a function of
the separation due to the decaying wave functions. On the other hand, the element h(2)

is not significantly modified. Notice that the element h(2) = 〈α(a)| 1
r
|β(a)〉 is basically an

on-site element in the environment of an off-site potential. The decaying behavior of h(2)

is simply 1/r as the potential goes. Under the Löwdin orthonormalization, the original
orbitals are minimally deformed. As a result, h(2) are only slightly modified.

Fig. 9.6c plots the Coulomb elements. The behaviors of the matrix elements are similar
to the hopping elements. As an effect of the orthogonalization, the U (1) and U (x) are
reduced to near zero values. Only the on-site U (0) and the direct Coulomb element U (d)

stay minimally modified. The on-site U (0) increases when the two sites get closer. The
value grows up because the orthogonalized orbitals are more compressed and localized
(see Fig. 8.7). A more compressed orbital means a higher on-site Coulomb energy. On
the other hand, the direct Coulomb element U (d) is slightly reduced when the two sites
get closer. The value reduces because the orbitals after orthogonalization tend to avoid
each other, and the centers of the gravity are relatively pushed away, which results in a
lower value of the direct Coulomb element.
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9.5. Basis orthonormalization effects on the matrix elements

The three plots in Fig. 9.6 presents the effects of the orthonormalization on the matrix ele-
ments of a simple two-site model. Certainly, for systems with different configurations, the
orthonormalization scheme produces different orthonormal orbitals (e.g. Fig. 8.8) and the
corresponding matrix elements would be different. To understand the system dependence,
we study the hopping matrix elements of different ring systems under the orthogonaliza-
tion scheme. Table 9.3 gives a list of ring systems consisting of hydrogen 1s-orbitals with
the nearest-neighbor distance a = 2 a0 ranging from two sites to six sites. Essentially, we
see that modification on the matrix elements does not have a strong dependence on the
number of sites. The general behaviors of the multi-center elements and the effects of the
orthonormalization are essentially captured in the two-site model.

Table 9.3.: Transformed matrix elements under the effect of the Löwdin orthonormal-
ization with different system configurations. All the ring systems consist of
hydrogen 1s-orbitals with the nearest-neighbor distance a = 2 a0. The matrix
elements are given in units of Hartree.

Original

h
(0)
αβ 1.000 1.085 1.126 1.166 1.184 1.198

h
(1)
αβ 0.406 −0.039 −0.020 −0.040 −0.044 −0.053

h
(2)
αβ 0.473 0.434 0.432 0.443 0.452 0.458
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10. Summary

If you run a simple line of code,

print([format(i,’06b’) for i in range(1<<6) if bin(i).count(’1’)==2])

you have basically created the occupation representation of a many-electron basis.

The line above generates 15 binary strings, which represent the 15 many-electron basis
configurations of a system with 6 basis-orbitals and 2 electrons. However, you soon realize
that, if you increase the system size, the basis dimension will explode exponentially and
eventually kill your laptop (try 30 orbitals and 15 electrons).

Simply enumerating the basis configuration is already hard. Solving the many-electron
Hamiltonians brute-force is practically impossible. Nevertheless, Chapter 1 provides ex-
plicit algorithms for setting up many-electron bases and matrix representations of Hamil-
tonians. It sets up a stage where we can use the exact diagonalization method to solve
relatively simple systems and compare results with other methods.

We first discussed in Chapter 2 the tight-binding method to solve and understand re-
alistic materials. Here we discussed the basic concepts of the Bloch waves and energy
bands. However, building a realistic model requires having the realistic basis orbitals.
In Chapter 3, we developed an SCF solver to compute many-electron atomic systems
ab-initio. The resulting self-consistent atomic orbitals and potentials are the building
blocks for modeling any material. Normally, when people talk about DFT, they think
about heavy calculations with some million-line-code software. Here, within three hun-
dred lines, we developed a nice and compact DFT code. In fact, we have taught the code
in one of our master’s courses, and received very positive feedbacks from the students
that they understood the problems into detail and comprehended the DFT calculations
more intuitively.

In Chapter 4, we discussed solving many-electron atomic open-shell systems using the LS-
and jj-coupling schemes. Atomic open-shells are precious many-electron systems that can
be solved analytically. The resulting many-electron eigen-states and eigen-energies are
known as the multiplets. Multiplets present many-electron properties of materials in the
atomic limit. In Chapter 5, we asked a question if there is a pattern among the matrix
elements across the periodic table. We studied systematically for atomic systems the
trends of the Coulomb and spin-orbit interactions and the corresponding matrix elements.
We provided the trends of values as fit functions for practical calculations.

The comparison of the interaction strengths from Chapter 5 gave rise to the study of
the moment formulas in Chapter 6. Here we tried – in some sense – to solve the general
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10. Summary

many-body problem. We solved a general one-body Hamiltonian up to an arbitrary
moment; we also solved a general two-body Hamiltonian up to the 2nd moment. The
moment formulas give us exact solutions of many-electron systems without the need of
working with a many-electron basis. Certain physical information of the many-electron
system (e.g. the spectral variance), which could cost terabytes of computer memories
and hundreds of computational hours from a standard many-body approach, can be now
computed analytically. To derive the moment formulas, a lot of techniques and tricks such
as the density matrix expansion and the conditional combinatorics are used. However, a
good physicist should have already smelled that there is something deep here. As we saw
that the difficulty of the problems explodes quickly during the derivations, but collapses
suddenly to some compact forms in the end. From lower to higher moments, the solutions
exhibit beautiful patterns. We believe that it is extremely valuable to dig deeper into this
topic and eventually discover more symmetries and general solutions for the many-body
problems.

Chapter 7 is needed for discussing the multi-center integrals in the next two chapters.
Here we discussed the integral of three spherical harmonics – the Gaunt coefficient. Such
integrals are ubiquitous for problems that involve spherical harmonic expansions. For
expansions that involve large angular momenta, computing the corresponding Gaunt
numbers accurately can be challenging. We developed a recursive algorithm based on
finite-precision arithmetic to compute the Gaunt coefficients efficiently and accurately.

In Chapter 8, we discussed a systematic way to compute orbital overlaps and introduced
the overlap formula. The overlap formula is general for evaluating overlaps involving any
atomic orbitals with arbitrary relative displacements. Given a non-orthonormal basis set,
we can compute the overlap matrix and produce a new set of basis orbitals which are
mutually orthonormal, yet preserving their atomic features as much as possible using the
Löwdin symmetric orthogonalization scheme. In Chapter 9, we generalized the multi-
center problems using the re-centering method. We studied the evaluation of general
multi-center integrals including hopping matrix elements and long-range Coulomb matrix
elements, and the effects of orbital orthogonalization on the resulting matrix elements.

From density functional theory to many-body methods, from intensive numerical calcu-
lations to heavy analytical derivations, our results provide a solid basis for simulating
realistic many-electron systems. The developed algorithms and methods – in particular
the moment approach – opens possibility and brings new insights for understanding the
very challenging quantum many-body problems.
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A. Hydrogen reference tables

A.1. Hydrogen-like radial wave functions

Table A.1.: Radial wave functions unl(r) (n = 1, 2, 3, 4) for hydrogen-like atoms with
atomic number Z. A rescaled coordinate ρ = Zr (r in units of Bohr radius)
is used to simplify the expressions. Eigen-energies: En = − Z2

2n2 (Hartree).

u10 = 2
√
Zρ exp (−ρ)

u20 =
1√
2

√
Zρ

(
1− 1

2
ρ
)

exp (−ρ/2)

u21 =
1√
24

√
Zρ2 exp (−ρ/2)

u30 =
2√
27

√
Zρ

(
1− 2

3
ρ+

2

27
ρ2
)

exp (−ρ/3)

u31 =
8

27
√

6

√
Zρ2

(
1− 1

6
ρ
)

exp (−ρ/3)

u32 =
4

81
√

30

√
Zρ3 exp (−ρ/3)

u40 =
1

4

√
Zρ

(
1− 3

4
ρ+

1

8
ρ2 − 1

192
ρ3
)

exp (−ρ/4)

u41 =
5

16
√

15

√
Zρ2

(
1− 1

4
ρ+

1

80
ρ2
)

exp (−ρ/4)

u42 =
1

64
√

5

√
Zρ3

(
1− 1

12
ρ
)

exp (−ρ/4)

u43 =
1

768
√

35

√
Zρ4 exp (−ρ/4)
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Table A.1 extended for n = 5, 6, 7.

u50 =
2

5
√

5

√
Zρ

(
1−

4

5
ρ+

4

25
ρ2 −

4

375
ρ3 +

2

9375
ρ4
)

exp (−ρ/5)

u51 =
8

25
√

30

√
Zρ2

(
1−

3

10
ρ+

3

125
ρ2 −

1

1875
ρ3
)

exp (−ρ/5)

u52 =
28

625
√

70

√
Zρ3

(
1−

2

15
ρ+

2

525
ρ2
)

exp (−ρ/5)

u53 =
16

9375
√

70

√
Zρ4

(
1−

1

20
ρ
)

exp (−ρ/5)

u54 =
4

140625
√

70

√
Zρ5 exp (−ρ/5)

u60 =
1

3
√

6

√
Zρ

(
1−

5

6
ρ+

5

27
ρ2 −

5

324
ρ3 +

1

1944
ρ4 −

1

174960
ρ5
)

exp (−ρ/6)

u61 =
35

54
√

210

√
Zρ2

(
1−

1

3
ρ+

1

30
ρ2 −

1

810
ρ3 +

1

68040
ρ4
)

exp (−ρ/6)

u62 =
7

162
√

105

√
Zρ3

(
1−

1

6
ρ+

1

126
ρ2 −

1

9072
ρ3
)

exp (−ρ/6)

u63 =
1

972
√

35

√
Zρ4

(
1−

1

12
ρ+

1

648
ρ2
)

exp (−ρ/6)

u64 =
1

104976
√

7

√
Zρ5

(
1−

1

30
ρ
)

exp (−ρ/6)

u65 =
1

3149280
√

77

√
Zρ6 exp (−ρ/6)

u70 =
2

7
√

7

√
Zρ

(
1−

6

7
ρ+

10

49
ρ2 −

20

1029
ρ3 +

2

2401
ρ4 −

4

252105
ρ5 +

4

37059435
ρ6
)

exp (−ρ/7)

u71 =
8

49
√

21

√
Zρ2

(
1−

5

14
ρ+

2

49
ρ2 −

2

1029
ρ3 +

2

50421
ρ4 −

1

3529470
ρ5
)

exp (−ρ/7)

u72 =
12

343
√

105

√
Zρ3

(
1−

4

21
ρ+

4

343
ρ2 −

2

7203
ρ3 +

1

453789
ρ4
)

exp (−ρ/7)

u73 =
16

16807
√

42

√
Zρ4

(
1−

3

28
ρ+

1

294
ρ2 −

1

30870
ρ3
)

exp (−ρ/7)

u74 =
44

1058841
√

154

√
Zρ5

(
1−

2

35
ρ+

2

2695
ρ2
)

exp (−ρ/7)

u75 =
8

12353145
√

231

√
Zρ6

(
1−

1

42
ρ
)

exp (−ρ/7)

u76 =
4

259416045
√

3003

√
Zρ7 exp (−ρ/7)
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A.2. Slater-Condon parameters

A.2. Slater-Condon parameters

Table A.2.: Slater-Condon parameters for the exact hydrogen wave functions with n =
1, 2, 3, 4, 5, 6, 7. Energies are given in units of Hartree (a.u.). For hydrogen-

like wave functions, F
(k)
Z = ZF

(k)
H .

Shell k F
(k)
H

1s 0 5/8
2s 0 77/512
2p 0 93/512

2 45/512
3s 0 17/256
3p 0 1987/27648

2 995/27648
3d 0 793/9216

2 2093/46080
4 91/3072

4s 0 19541/524288
4p 0 20413/524288

2 10445/524288
4d 0 22373/524288

2 56553/2621440
4 7749/524288

4f 0 26333/524288
2 103275/3670016
4 69003/3670016
6 7293/524288

Shell k F
(k)
H

6s 0 624353/37748736
6p 0 1909283/113246208

2 995155/113246208
6d 0 2646769/150994944

2 6790501/754974720
4 317819/50331648

6f 0 937403/50331648
2 10013975/1056964608
4 20939237/3170893824
6 773201/150994944

6g 0 9211115/452984832
2 534611/50331648
4 29887715/4076863488
6 2554123/452984832
8 2073643/452984832

6h 0 1172755/50331648
2 2607787/184549376
4 48790105/4982833152
6 4085185/553648128
8 3254225/553648128
10 734825/150994944

Shell k F
(k)
H

5s 0 39043/1638400
5p 0 2007/81920

2 1039/81920
5d 0 53111/2048000

2 5403/409600
4 18819/2048000

5f 0 186211/6553600
2 133821/9175040
4 460449/45875200
6 251823/32768000

5g 0 43191/1310720
2 75889/3932160
4 31031/2359296
6 193193/19660800
8 51051/6553600

Shell k F
(k)
H

7s 0 1248305/102760448
7p 0 2893591/234881024

2 10602465/1644167168
7d 0 145867055/11509170176

2 376839867/57545850880
4 53141031/11509170176

7f 0 38091791/2877292544
2 19446615/2877292544
4 13646039/2877292544
6 10648495/2877292544

7g 0 40483999/2877292544
2 62054677/8631877632
4 1426795669/284851961856
6 369613439/94950653952
8 9185423/2877292544

7h 0 25152233/1644167168
2 147116723/18085838848
4 101801947/18085838848
6 78546715/18085838848
8 447928325/126600871936
10 4900233/1644167168

7i 0 28539857/1644167168
2 231477565/21374173184
4 1789828119/235115905024
6 1359198535/235115905024
8 98868685/21374173184
10 82083021/21374173184
12 5386025/1644167168
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A.3. Spin-orbit parameters

Table A.3.: Spin-orbit parameters for the exact hydrogen wave functions with n =
2, 3, 4, 5, 6, 7. Energies are given in units of Hartree (a.u.). In atomic
units, c ≈ 137.036 a0/t0. For s-shells, there is no spin-orbit interaction. For
hydrogen-like wave functions, ΞZ = Z4ΞH.

Shell ΞH

2p 1/(48c2)

3p 1/(162c2)
3d 1/(810c2)

4p 1/(384c2)
4d 1/(1920c2)
4f 1/(5376c2)

5p 1/(750c2)
5d 1/(3750c2)
5f 1/(10500c2)
5g 1/(22500c2)
6p 1/(1296c2)
6d 1/(6480c2)
6f 1/(18144c2)
6g 1/(38880c2)
6h 1/(71280c2)

7p 1/(2058c2)
7d 1/(10290c2)
7f 1/(28812c2)
7g 1/(61740c2)
7h 1/(113190c2)
7i 1/(187278c2)
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A.4. The first few spherical harmonics

A.4. The first few spherical harmonics

Table A.4.: The first few spherical harmonics.

Y0, 0 =

√
1

4π

Y1, 0 =

√
3

4π
cos θ

Y1,±1 = ∓
√

3

8π
sin θ e±iφ

Y2, 0 =

√
5

16π
(3 cos2 θ − 1)

Y2,±1 = ∓
√

15

8π
sin θ cos θ e±iφ

Y2,±2 =

√
15

32π
sin2 θ e±2iφ

Y3, 0 =

√
7

16π
(5 cos3 θ − 3 cos θ)

Y3,±1 = ∓
√

21

64π
sin θ(5 cos2 θ − 1) e±iφ

Y3,±2 =

√
105

32π
sin2 θ cos θ e±2iφ

Y3,±3 = ∓
√

35

64π
sin3 θ e±3iφ
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A.5. The first few cubic harmonics

A.5. The first few cubic harmonics

Table A.5.: The first few cubic harmonics. x, y, z are the components of the unit vector
r̂ (direction cosines).

s = Y0,0 =

√
1

4π

px =
1√
2

(Y1,−1 − Y1,1) =

√
3

4π
x

pz = Y1,0 =

√
3

4π
z

py =
i√
2

(Y1,−1 + Y1,1) =

√
3

4π
y

dx2−y2 =
1√
2

(Y2,−2 + Y2,2) =

√
15

16π
(x2 − y2)

dxz =
1√
2

(Y2,−1 − Y2,1) =

√
15

4π
xz

d3z2−1 = Y2,0 =

√
5

16π
(3z2 − 1)

dyz =
i√
2

(Y2,−1 + Y2,1) =

√
15

4π
yz

dxy =
i√
2

(Y2,−2 − Y2,2) =

√
15

4π
xy

fx(x2−3y2) =
1√
2

(Y3,−3 − Y3,3) =

√
35

32π
x(x2 − 3y2)

fz(x2−y2) =
1√
2

(Y3,−2 + Y3,2) =

√
105

16π
z(x2 − y2)

fx(5z2−1) =
1√
2

(Y3,−1 − Y3,1) =

√
21

32π
x(5z2 − 1)

fz(5z2−3) = Y3,0 =

√
7

16π
z(5z2 − 3)

fy(5z2−1) =
i√
2

(Y3,−1 + Y3,1) =

√
21

32π
y(5z2 − 1)

fxyz =
i√
2

(Y3,−2 − Y3,2) =

√
105

4π
xyz

fy(3x2−y2) =
i√
2

(Y3,−3 + Y3,3) =

√
35

32π
y(3x2 − y2)
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A.6. Orbital overlap angular dependences

A.6. Orbital overlap angular dependences

Table A.6.: Angular dependences of s-, p-, and d-orbital overlaps A
(λ)
αβ (r̂) (8.36). The unit

vector r̂ points from orbital-α to orbital-β. x, y, z are the components of the
unit vector r̂ (direction cosines). The cubic harmonics are sorted according

to Table A.5. Note that A
(λ)
βα (r̂) = A

(λ)
αβ (−r̂).

α β A
(0)
αβ(r̂) A

(1)
αβ(r̂) A

(2)
αβ(r̂) A

(3)
αβ(r̂) A

(4)
αβ(r̂)

s s 1

s px −
√

3x

s pz −
√

3z

s py −
√

3y

s dx2−y2
√
15
2 (x2 − y2)

s dxz
√

15xz

s d3z2−1
√
5
2 (3z2 − 1)

s dyz
√

15yz

s dxy
√

15xy

px px 1 1− 3x2

px pz 0 −3xz

px py 0 −3xy

px dx2−y2 − 3
√
5

5 x 3
√
5

10 x(5x2 − 5y2 − 2)

px dxz − 3
√
5

5 z 3
√
5

5 z(5x2 − 1)

px d3z2−1
√
15
5 x 3

√
15

10 x(5z2 − 1)

px dyz 0 3
√

5xyz

px dxy − 3
√
5

5 y 3
√
5

5 y(5x2 − 1)

pz pz 1 1− 3z2

pz py 0 −3yz

pz dx2−y2 0 3
√
5

2 z(x2 − y2)

pz dxz − 3
√
5

5 x 3
√
5

5 x(5z2 − 1)

pz d3z2−1 − 2
√
15
5 z 3

√
15

10 z(5z2 − 3)

pz dyz − 3
√
5

5 y 3
√
5

5 y(5z2 − 1)

pz dxy 0 3
√

5xyz
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Table A.6 continued.

α β A
(0)
αβ(r̂) A

(1)
αβ(r̂) A

(2)
αβ(r̂) A

(3)
αβ(r̂) A

(4)
αβ(r̂)

py py 1 1− 3y2

py dx2−y2
3
√
5

5 y 3
√
5

10 y(5x2 − 5y2 + 2)

py dxz 0 3
√

5xyz

py d3z2−1
√
15
5 y 3

√
5

10 y(5z2 − 1)

py dyz − 3
√
5

5 z 3
√
5

5 z(5y2 − 1)

py dxy − 3
√
5

5 x 3
√
5

5 x(5y2 − 1)

dx2−y2 dx2−y2 1 5
7 (3z2 − 1) 3

28 (35(x2 − y2)2 + 20z2 − 16)

dx2−y2 dxz 0 − 15
7 xz

15
14xz(7(x2 − y2)− 2)

dx2−y2 d3z2−1 0 5
√
3

7 (x2 − y2) 15
√
3

28 (x2 − y2)(7z2 − 1)

dx2−y2 dyz 0 15
7 yz

15
14yz(7(x2 − y2) + 2)

dx2−y2 dxy 0 0 15
2 xy(x2 − y2)

dxz dxz 1 5
7 (3y2 − 1) 3

7 (35x2z2 + 5y2 − 4)

dxz d3z2−1 0 − 5
√
3

7 xz 15
√
3

14 xz(7z2 − 3)

dxz dyz 0 − 15
7 xz

15
7 xy(7z2 − 1)

dxz dxy 0 − 15
7 yz

15
7 yz(7x

2 − 1)

d3z2−1 d3z2−1 1 − 5
7 (3z2 − 1) 9

28 (35z4 − 30z2 + 3)

d3z2−1 dyz 0 − 5
√
3

7 yz 15
√
3

14 yz(7z2 − 3)

d3z2−1 dxy 0 10
√
3

7 xy 15
√
3

14 xy(7z2 − 1)

dyz dyz 1 5
7 (3x2 − 1) 3

7 (35y2z2 + 5x2 − 4)

dyz dxy 0 − 15
7 xz

15
7 xz(7y

2 − 1)

dxy dxy 1 5
7 (3z2 − 1) 3

7 (35x2y2 + 5z2 − 4)
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B. Multiplet reference tables

B.1. Slater-Condon and Racah parameters

References [59, 60, 61, 22, 62, 21].

Table B.1.: Slater-Condon and Racah parameters

Shell F(k) Racah

s F(0) = F (0) A = F (0) = F(0)

p F(0) = F (0) A = F (0) = F(0)

F(2) =
1

25
F (2) B =

1

25
F (2) = F(2)

d F(0) = F (0) A = F (0) − 1

9
F (4) = F(0) − 49F(4)

F(2) =
1

49
F (2) B =

1

49
F (2) − 5

441
F (4) = F(2) − 5F(4)

F(4) =
1

441
F (4) C =

5

63
F (4) = 35F(4)

f F(0) = F (0) A = F (0) − 7

363
F (4) − 100

1573
F (6) = F(0) − 21F(4) − 468F(6)

F(2) =
1

225
F (2) B =

1

225
F (2) +

2

1815
F (4) − 35

14157
F (6) = F(2) +

6

5
F(4) −

91

5
F(6)

F(4) =
1

1089
F (4) C =

7

5445
F (4) − 70

61347
F (6) =

7

5
F(4) −

42

5
F(6)

F(6) =
25

184041
F (6) D =

350

5577
F (6) = 462F(6)

B.2. Table of open-shell multiplets
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T
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for

op
en
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d

an
d
f

sh
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S
h

ell
M

u
ltip

lets

s
0
s
2

1S

s
1

2S

p
0
p
6

1S

p
1
p
5

2P

p
2
p
4

1S
3P

1D

p
3

4S
2P

2D

d
0
d
1
0

1S

d
1
d
9

2D

d
2
d
8

1S
3P

1D
3F

1G

d
3
d
7

2P
4P

2×
2D

2F
4F

2G
2H

d
4
d
6

2×1S
2×
3P

2×
1D

3D
5D

1F
2×
3F

2×
1G

3G
3H

1I

d
5

2S
6S

2P
4P

3×
2D

4D
2×
2F

4F
2×
2G

4G
2H

2I

f
0
f
1
4

1S

f
1
f
1
3

2F

f
2
f
1
2

1S
3P

1D
3F

1G
3H

1I

f
3
f
1
1

4S
2P

2×
2D

4D
2×
2F

4F
2×
2G

4G
2×
2H

2I
4I

2K
2L

f
4
f
1
0

2×1S
5S

3×
3P

4×
1D

2×
3D

5D
1F

4×
3F

5F
4×
1G

3×
3G

5G
2×
1H

4×
3H

3×1I
2×3I

5I
1K

2×
3K

2×1L
3L

3M
1N

f
5
f
9

4S
4×
2P

2×
4P

6P
5×
2D

3×
4D

7×
2F

4×
4F

6F
6×
2G

4×
4G

7×
2H

3×
4H

6H
5×2I

3×4I
5×
2K

2×
4K

3×2L
4L

2×
2M

4M
2N

2O

f
6
f
8

4×1S
5S

1P
6×
3P

5P
6×
1D

5×
3D

3×
5D

4×
1F

9×
3F

2×
5F

7F
8×
1G

7×
3G

3×
5G

4×
1H

9×
3H

2×
5H

7×1I
6×3I

2×5I
3×
1K

6×
3K

5K
4×1L

3×3L
5L

2×
1M

3×
3M

2×
1N

3N
3O

1Q

f
7

2×2S
2×4S

8S
5×
2P

2×
4P

6P
7×
2D

6×
4D

6D
1
0×
2F

5×
4F

6F
1
0×
2G

7×
4G

6G
9×
2H

5×
4H

6H
9×2I

5×4I
6I

7×
2K

3×
4K

5×2L
3×4L

4×
2M

4M
2×
2N

4N
2O

2Q
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B.3. Hund’s rule ground state term energies

B.3. Hund’s rule ground state term energies

Table B.3.: Hund’s rule ground state term energies

s0 1S 0

s1 2S 0

s2 1S F (0)

p0 1S 0

p1 2P 0

p2 3P F (0) − 1

5
F (2)

p3 4S 3F (0) − 3

5
F (2)

p4 3P 6F (0) − 3

5
F (2)

p5 2P 10F (0) − 4

5
F (2)

p6 1S 15F (0) − 6

5
F (2)

d0 1S 0

d1 2D 0

d2 3F F (0) − 8

49
F (2) − 1

49
F (4)

d3 4F 3F (0) − 15

49
F (2) − 8

49
F (4)

d4 5D 6F (0) − 3

7
F (2) − 3

7
F (4)

d5 6S 10F (0) − 5

7
F (2) − 5

7
F (4)

d6 5D 15F (0) − 5

7
F (2) − 5

7
F (4)

d7 4F 21F (0) − 43

49
F (2) − 36

49
F (4)

d8 3F 28F (0) − 50

49
F (2) − 43

49
F (4)

d9 2D 36F (0) − 8

7
F (2) − 8

7
F (4)

d10 1S 45F (0) − 10

7
F (2) − 10

7
F (4)

f0 1S 0

f1 2F 0

f2 3H F (0) − 1

9
F (2) − 17

363
F (4) − 25

14157
F (6)

f3 4I 3F (0) − 13

45
F (2) − 47

363
F (4) − 425

14157
F (6)

f4 5I 6F (0) − 19

45
F (2) − 80

363
F (4) − 2075

14157
F (6)

f5 6H 10F (0) − 23

45
F (2) − 116

363
F (4) − 4975

14157
F (6)

f6 7F 15F (0) − 2

3
F (2) − 5

11
F (4) − 250

429
F (6)

f7 8S 21F (0) − 14

15
F (2) − 7

11
F (4) − 350

429
F (6)

f8 7F 28F (0) − 14

15
F (2) − 7

11
F (4) − 350

429
F (6)

f9 6H 36F (0) − 47

45
F (2) − 248

363
F (4) − 11575

14157
F (6)

f10 5I 45F (0) − 11

9
F (2) − 278

363
F (4) − 11975

14157
F (6)

f11 4I 55F (0) − 61

45
F (2) − 311

363
F (4) − 13625

14157
F (6)

f12 3H 66F (0) − 13

9
F (2) − 347

363
F (4) − 16525

14157
F (6)

f13 2F 78F (0) − 8

5
F (2) − 12

11
F (4) − 200

143
F (6)

f14 1S 91F (0) − 28

15
F (2) − 14

11
F (4) − 700

429
F (6)
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B.4. Multiplet term energies

Table B.4.: Multiplet term energies for open s, p, d and f shells.

p0 0 1S 15F (0) − 6

5
F (2) p6

p1 0 2P 10F (0) − 4

5
F (2) p5

p2 F (0) − 1

5
F (2) 3P 6F (0) − 3

5
F (2) p4

F (0) +
1

25
F (2) 1D 6F (0) − 9

25
F (2)

F (0) +
2

5
F (2) 1S 6F (0)

p3 3F (0) − 3

5
F (2) 4S

3F (0) − 6

25
F (2) 2D

3F (0) 2P

s0 0 1S F (0) s2

s1 0 2S

d0 0 1S 45F (0) − 10

7
F (2) − 10

7
F (4) d10

d1 0 2D 36F (0) − 8

7
F (2) − 8

7
F (4) d9

d2 F (0) − 8

49
F (2) − 1

49
F (4) 3F 28F (0) − 50

49
F (2) − 43

49
F (4) d8

F (0) +
1

7
F (2) − 4

21
F (4) 3P 28F (0) − 5

7
F (2) − 22

21
F (4)

F (0) +
4

49
F (2) +

1

441
F (4) 1G 28F (0) − 38

49
F (2) − 377

441
F (4)

F (0) − 3

49
F (2) +

4

49
F (4) 1D 28F (0) − 45

49
F (2) − 38

49
F (4)

F (0) +
2

7
F (2) +

2

7
F (4) 1S 28F (0) − 4

7
F (2) − 4

7
F (4)

d3 3F (0) − 15

49
F (2) − 8

49
F (4) 4F 21F (0) − 43

49
F (2) − 36

49
F (4) d7

3F (0) − 1

3
F (4) 4P 21F (0) − 4

7
F (2) − 19

21
F (4)

3F (0) − 6

49
F (2) − 4

147
F (4) 2H 21F (0) − 34

49
F (2) − 88

147
F (4)

3F (0) − 11

49
F (2) +

13

441
F (4) 2G 21F (0) − 39

49
F (2) − 239

441
F (4)

3F (0) +
9

49
F (2) − 29

147
F (4) 2F 21F (0) − 19

49
F (2) − 113

147
F (4)

3F (0) +
5

49
F (2) +

1

147
F (4) − ∆ 2D 21F (0) − 23

49
F (2) − 83

147
F (4) − ∆

3F (0) +
5

49
F (2) +

1

147
F (4) + ∆ 2D 21F (0) − 23

49
F (2) − 83

147
F (4) + ∆

3F (0) − 6

49
F (2) − 4

147
F (4) 2P 21F (0) − 34

49
F (2) − 88

147
F (4)

∆ =
1

147

√
1737F (2)2 − 1650F (2)F (4) + 925F (4)2
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B.4. Multiplet term energies

d4 6F (0) − 3

7
F (2) − 3

7
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//hdl.handle.net/2128/4611.

[21] M. Weissbluth. Atoms and Molecules. Academic Press, 1978.

[22] G. Racah. Theory of complex spectra. III. Phys. Rev., 63:367, 1943.

[23] C. W. Haigh. The theory of atomic spectroscopy: jj coupling, intermediate coupling,
and configuration interaction. J. Chem. Educ., 72:206, 1995.

[24] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team. NIST atomic spectra
database. National Institute of Standards and Technology, Gaithersburg, MD., 2018.
doi:10.18434/T4W30F.

[25] H. J. Zeiger and G. W. Pratt. Magnetic interactions in solids. Clarendon Press,
1973.

[26] W. C. Martin, A. Musgrove, S. Kotochigova, and J. E. Sansonetti. Ground levels
and ionization energies for the neutral atoms. National Institute of Standards and
Technology, Gaithersburg, MD., 2013. doi:10.18434/T42P4C.

210

https://doi.org/10.18434/T4ZP4F
http://hdl.handle.net/2128/8437
http://hdl.handle.net/2128/4611
http://hdl.handle.net/2128/4611
https://doi.org/10.18434/T4W30F
https://doi.org/10.18434/T42P4C


Bibliography

[27] S. A. Goudsmit and P. I. Richards. The order of electron shells in ionized atoms.
Proc. Natl. Acad. Sci. U.S.A., 51:664, 1964.

[28] D. P. Wong. Theoretical justification of Madelung’s rule. J. Chem. Educ., 56:714,
1979.
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