000878579 001__ 878579
000878579 005__ 20240711085706.0
000878579 0247_ $$2Handle$$a2128/25541
000878579 0247_ $$2altmetric$$aaltmetric:58332190
000878579 0247_ $$2pmid$$apmid:30936480
000878579 037__ $$aFZJ-2020-02922
000878579 082__ $$a610
000878579 1001_ $$0P:(DE-Juel1)171462$$aDash, Apurv$$b0$$eCorresponding author
000878579 245__ $$aMolten salt shielded synthesis of oxidation prone materials in air
000878579 260__ $$aBasingstoke$$bNature Publishing Group$$c2019
000878579 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1599468619_14754
000878579 3367_ $$2ORCID$$aWORKING_PAPER
000878579 3367_ $$028$$2EndNote$$aElectronic Article
000878579 3367_ $$2DRIVER$$apreprint
000878579 3367_ $$2BibTeX$$aARTICLE
000878579 3367_ $$2DataCite$$aOutput Types/Working Paper
000878579 520__ $$aTo prevent spontaneous oxidation during the high-temperature synthesis of non-oxide ceramics, an inert atmosphere is conventionally required1,2. This, however, results in high energy demand and high production costs. Here, we present a process for the synthesis and consolidation of oxidation-prone materials, the ‘molten salt shielded synthesis/sintering’ process (MS3), which uses molten salts as a reaction medium and also to protect the ceramic powders from oxidation during high-temperature processing in air. Synthesis temperatures are also reduced, and the final product is a highly pure, fine and loose powder that does not require additional milling steps. MS3 has been used for the synthesis of different ternary transition metal compounds (MAX phases, such as Ti3SiC23, Ti2AlN4, MoAlB5), binary carbides (TiC) and for the sintering of titanium. The availability of high-quality powders, combined with energy and cost savings, may remove one of the bottlenecks for the industrial application of these materials.
000878579 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000878579 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b1
000878579 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2
000878579 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b3
000878579 773__ $$0PERI:(DE-600)2088679-2$$n5$$p465 - 470$$tNature materials$$v18$$x1476-4660$$y2019
000878579 8564_ $$uhttps://juser.fz-juelich.de/record/878579/files/Preprint.pdf$$yOpenAccess
000878579 8564_ $$uhttps://juser.fz-juelich.de/record/878579/files/Preprint.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878579 909CO $$ooai:juser.fz-juelich.de:878579$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878579 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171462$$aForschungszentrum Jülich$$b0$$kFZJ
000878579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b1$$kFZJ
000878579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b2$$kFZJ
000878579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ
000878579 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000878579 9141_ $$y2020
000878579 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878579 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000878579 9801_ $$aFullTexts
000878579 980__ $$apreprint
000878579 980__ $$aVDB
000878579 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878579 980__ $$aI:(DE-82)080011_20140620
000878579 980__ $$aUNRESTRICTED
000878579 981__ $$aI:(DE-Juel1)IMD-2-20101013