001     878579
005     20240711085706.0
024 7 _ |a 2128/25541
|2 Handle
024 7 _ |a altmetric:58332190
|2 altmetric
024 7 _ |a pmid:30936480
|2 pmid
037 _ _ |a FZJ-2020-02922
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)171462
|a Dash, Apurv
|b 0
|e Corresponding author
245 _ _ |a Molten salt shielded synthesis of oxidation prone materials in air
260 _ _ |a Basingstoke
|b Nature Publishing Group
|c 2019
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1599468619_14754
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
520 _ _ |a To prevent spontaneous oxidation during the high-temperature synthesis of non-oxide ceramics, an inert atmosphere is conventionally required1,2. This, however, results in high energy demand and high production costs. Here, we present a process for the synthesis and consolidation of oxidation-prone materials, the ‘molten salt shielded synthesis/sintering’ process (MS3), which uses molten salts as a reaction medium and also to protect the ceramic powders from oxidation during high-temperature processing in air. Synthesis temperatures are also reduced, and the final product is a highly pure, fine and loose powder that does not require additional milling steps. MS3 has been used for the synthesis of different ternary transition metal compounds (MAX phases, such as Ti3SiC23, Ti2AlN4, MoAlB5), binary carbides (TiC) and for the sintering of titanium. The availability of high-quality powders, combined with energy and cost savings, may remove one of the bottlenecks for the industrial application of these materials.
536 _ _ |0 G:(DE-HGF)POF3-113
|a 113 - Methods and Concepts for Material Development (POF3-113)
|c POF3-113
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)129670
|a Vaßen, Robert
|b 1
700 1 _ |0 P:(DE-Juel1)161591
|a Guillon, Olivier
|b 2
700 1 _ |0 P:(DE-Juel1)162271
|a Gonzalez-Julian, Jesus
|b 3
773 _ _ |0 PERI:(DE-600)2088679-2
|n 5
|p 465 - 470
|t Nature materials
|v 18
|x 1476-4660
|y 2019
856 4 _ |u https://juser.fz-juelich.de/record/878579/files/Preprint.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/878579/files/Preprint.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:878579
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171462
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129670
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161591
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162271
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21