000878581 001__ 878581
000878581 005__ 20240711085706.0
000878581 0247_ $$2Handle$$a2128/25538
000878581 0247_ $$2altmetric$$aaltmetric:23713274
000878581 037__ $$aFZJ-2020-02924
000878581 041__ $$aEnglish
000878581 082__ $$a670
000878581 1001_ $$0P:(DE-Juel1)136812$$aBakan, Emine$$b0
000878581 245__ $$aCeramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, an Properties
000878581 260__ $$aBoston, Mass.$$bSpringer$$c2017
000878581 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1598423292_9306
000878581 3367_ $$2ORCID$$aWORKING_PAPER
000878581 3367_ $$028$$2EndNote$$aElectronic Article
000878581 3367_ $$2DRIVER$$apreprint
000878581 3367_ $$2BibTeX$$aARTICLE
000878581 3367_ $$2DataCite$$aOutput Types/Working Paper
000878581 520__ $$aThe ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic–extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.
000878581 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000878581 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b1$$eCorresponding author
000878581 773__ $$0PERI:(DE-600)2047715-6$$n6$$p992 - 1010$$tJournal of thermal spray technology$$v26$$x1059-9630$$y2017
000878581 8564_ $$uhttps://juser.fz-juelich.de/record/878581/files/Preprint.pdf$$yOpenAccess
000878581 8564_ $$uhttps://juser.fz-juelich.de/record/878581/files/Preprint.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878581 909CO $$ooai:juser.fz-juelich.de:878581$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878581 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136812$$aForschungszentrum Jülich$$b0$$kFZJ
000878581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b1$$kFZJ
000878581 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000878581 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878581 9801_ $$aFullTexts
000878581 980__ $$apreprint
000878581 980__ $$aVDB
000878581 980__ $$aUNRESTRICTED
000878581 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878581 981__ $$aI:(DE-Juel1)IMD-2-20101013