000878585 001__ 878585
000878585 005__ 20240711085706.0
000878585 0247_ $$2Handle$$a2128/25535
000878585 037__ $$aFZJ-2020-02928
000878585 041__ $$aeng
000878585 082__ $$a670
000878585 1001_ $$0P:(DE-HGF)0$$aLimarga, A. M.$$b0$$eCorresponding author
000878585 245__ $$aStress Distributions in Plasma-Sprayed Thermal Barrier Coatings Under Thermal Cycling in a Temperature Gradient
000878585 260__ $$aNew York, NY$$bASME$$c2011
000878585 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1599468778_14754
000878585 3367_ $$2ORCID$$aWORKING_PAPER
000878585 3367_ $$028$$2EndNote$$aElectronic Article
000878585 3367_ $$2DRIVER$$apreprint
000878585 3367_ $$2BibTeX$$aARTICLE
000878585 3367_ $$2DataCite$$aOutput Types/Working Paper
000878585 520__ $$aThe residual stress distribution in plasma-sprayed zirconia thermal barrier coatings subjected to cyclic thermal gradient testing was evaluated using Raman piezospectroscopy and finite element computation. The thermal gradient testing (approximately 440 degrees C/mm at temperature), consisted of repeated front-side heating with a flame and constant cooling of the back-side of the substrate either with front-side radiative cooling only or with additional forced air cooling between the heating cycles. The coatings exhibited characteristic "mud-cracking" with the average crack spacing dependent on the cooling treatment. This is consistent with finite element calculations and Raman spectroscopy measurements in which the sudden drop in coating surface temperature on initial cooling leads to a large biaxial tension at the surface. The key to proper interpretation of the Raman shifts is that the stress-free Raman peaks need to be corrected for shifts associated with the evolution of the metastable tetragonal phase with aging.
000878585 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000878585 536__ $$0G:(DE-Juel1)FUEK402$$aRationelle Energieumwandlung (FUEK402)$$cFUEK402$$x1
000878585 7001_ $$0P:(DE-Juel1)129670$$aVaßen, R.$$b1
000878585 7001_ $$0P:(DE-HGF)0$$aClarke, D. R.$$b2
000878585 773__ $$0PERI:(DE-600)2021620-8$$p1 - 9$$tJournal of applied mechanics$$v78$$x0021-8936$$y2011
000878585 8564_ $$uhttps://juser.fz-juelich.de/record/878585/files/Preprint.pdf$$yOpenAccess
000878585 8564_ $$uhttps://juser.fz-juelich.de/record/878585/files/Preprint.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878585 909CO $$ooai:juser.fz-juelich.de:878585$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878585 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b1$$kFZJ
000878585 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000878585 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000878585 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878585 9801_ $$aFullTexts
000878585 980__ $$apreprint
000878585 980__ $$aVDB
000878585 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878585 980__ $$aUNRESTRICTED
000878585 981__ $$aI:(DE-Juel1)IMD-2-20101013