000878586 001__ 878586
000878586 005__ 20240711085549.0
000878586 0247_ $$2doi$$a10.1039/D0NR04396F
000878586 0247_ $$2ISSN$$a2040-3364
000878586 0247_ $$2ISSN$$a2040-3372
000878586 0247_ $$2Handle$$a2128/25673
000878586 0247_ $$2pmid$$apmid:32839795
000878586 0247_ $$2WOS$$aWOS:000566813600017
000878586 037__ $$aFZJ-2020-02929
000878586 041__ $$aEnglish
000878586 082__ $$a600
000878586 1001_ $$0P:(DE-Juel1)174238$$aRan, Ke$$b0$$eCorresponding author
000878586 245__ $$aDirection observation of the grain boundary segregation in molybdenum substituted lanthanum tungstate membranes
000878586 260__ $$aCambridge$$bRSC Publ.$$c2020
000878586 3367_ $$2DRIVER$$aarticle
000878586 3367_ $$2DataCite$$aOutput Types/Journal article
000878586 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600261963_4354
000878586 3367_ $$2BibTeX$$aARTICLE
000878586 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878586 3367_ $$00$$2EndNote$$aJournal Article
000878586 520__ $$aMolybdenum substituted lanthanum tungstate membranes (LWO-Mo) offer a good alternative for the separation of hydrogen from gas mixtures. During several essential steps of the membrane processing, an intensive employment of ZrO2 milling balls is usually inevitable. However, how these milling balls affect the final LWO-Mo membranes, is still largely unknown. Employing comprehensive transmission electron microscopy (TEM) techniques, the residual Zr was found to segregate to the grain boundaries (GBs) of the LWO-Mo, either as thin layers or as individual nanograins. At atomic scale, structural and chemical analyses on these GB features were carried out quantitatively. The segregated Zr took more than half of the W sites of the LWO-Mo, resulting in a strained LWO structure and locally concentrated oxygen vacancies. To minimize any Zr contamination, either a competent alternative for ZrO2 or a careful introduction of certain secondary phases (SPs) was proposed. Our results unravel the processing-induced GB behaviors in LWO-Mo, which pave the way towards further optimized processing for various types of functional membranes.
000878586 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000878586 588__ $$aDataset connected to CrossRef
000878586 7001_ $$0P:(DE-Juel1)144923$$aDeibert, Wendelin$$b1$$ufzj
000878586 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya E.$$b2$$ufzj
000878586 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm A.$$b3$$ufzj
000878586 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b4$$ufzj
000878586 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/D0NR04396F$$gp. 10.1039.D0NR04396F$$n34$$p17841-17848$$tNanoscale$$v12$$x2040-3372$$y2020
000878586 8564_ $$uhttps://juser.fz-juelich.de/record/878586/files/2020%20Nanoscale%2012%20LWMoO%20TEM-1.pdf$$yRestricted
000878586 8564_ $$uhttps://juser.fz-juelich.de/record/878586/files/revised_manuscript.pdf$$yPublished on 2020-08-19. Available in OpenAccess from 2021-08-19.
000878586 8564_ $$uhttps://juser.fz-juelich.de/record/878586/files/2020%20Nanoscale%2012%20LWMoO%20TEM-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878586 8564_ $$uhttps://juser.fz-juelich.de/record/878586/files/revised_manuscript.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-08-19. Available in OpenAccess from 2021-08-19.
000878586 909CO $$ooai:juser.fz-juelich.de:878586$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174238$$aForschungszentrum Jülich$$b0$$kFZJ
000878586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b1$$kFZJ
000878586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b2$$kFZJ
000878586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b3$$kFZJ
000878586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b4$$kFZJ
000878586 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000878586 9141_ $$y2020
000878586 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000878586 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000878586 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878586 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2018$$d2020-02-27
000878586 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2018$$d2020-02-27
000878586 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000878586 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000878586 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000878586 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000878586 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000878586 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-27$$wger
000878586 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000878586 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000878586 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878586 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000878586 9801_ $$aFullTexts
000878586 980__ $$ajournal
000878586 980__ $$aVDB
000878586 980__ $$aUNRESTRICTED
000878586 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878586 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000878586 981__ $$aI:(DE-Juel1)IMD-2-20101013