000878597 001__ 878597
000878597 005__ 20210130005659.0
000878597 0247_ $$2doi$$a10.1111/febs.15291
000878597 0247_ $$2ISSN$$a0014-2956
000878597 0247_ $$2ISSN$$a0945-5795
000878597 0247_ $$2ISSN$$a1432-1033
000878597 0247_ $$2ISSN$$a1742-464X
000878597 0247_ $$2ISSN$$a1742-4658
000878597 0247_ $$2Handle$$a2128/26280
000878597 0247_ $$2pmid$$apmid:32160407
000878597 0247_ $$2WOS$$aWOS:000558784200001
000878597 0247_ $$2altmetric$$aaltmetric:95163848
000878597 037__ $$aFZJ-2020-02935
000878597 082__ $$a610
000878597 1001_ $$0P:(DE-Juel1)162433$$aChaves, Gustavo$$b0
000878597 245__ $$aZinc modulation of proton currents in a new voltage‐gated proton channel suggests a mechanism of inhibition
000878597 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2020
000878597 3367_ $$2DRIVER$$aarticle
000878597 3367_ $$2DataCite$$aOutput Types/Journal article
000878597 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606289998_11956
000878597 3367_ $$2BibTeX$$aARTICLE
000878597 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878597 3367_ $$00$$2EndNote$$aJournal Article
000878597 520__ $$aThe HV1 voltage‐gated proton (HV1) channel is a key component of the cellular proton extrusion machinery and is pivotal for charge compensation during the respiratory burst of phagocytes. The best‐described physiological inhibitor of HV1 is Zn2+. Externally applied ZnCl2 drastically reduces proton currents reportedly recorded in Homo sapiens, Rattus norvegicus, Mus musculus, Oryctolagus cuniculus, Rana esculenta, Helix aspersa, Ciona intestinalis, Coccolithus pelagicus, Emiliania huxleyi, Danio rerio, Helisoma trivolvis, and Lingulodinium polyedrum, but with considerable species variability. Here, we report the effects of Zn2+ and Cd2+ on HV1 from Nicoletia phytophila, NpHV1. We introduced mutations at potential Zn2+ coordination sites and measured Zn2+ inhibition in different extracellular pH, with Zn2+ concentrations up to 1000 μm. Zn2+ inhibition in NpHV1 was quantified by the slowing of the activation time constant and a positive shift of the conductance–voltage curve. Replacing aspartate in the S3‐S4 loop with histidine (D145H) enhanced both the slowing of activation kinetics and the shift in the voltage–conductance curve, such that Zn2+ inhibition closely resembled that of the human channel. Histidine is much more effective than aspartate in coordinating Zn2+ in the S3‐S4 linker. A simple Hodgkin Huxley model of NpHV1 suggests a decrease in the opening rate if it is inhibited by zinc or cadmium. Limiting slope measurements and high‐resolution clear native gel electrophoresis (hrCNE) confirmed that NpHV1 functions as a dimer. The data support the hypothesis that zinc is coordinated in between the dimer instead of the monomer. Zinc coordination sites may be potential targets for drug development.
000878597 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000878597 588__ $$aDataset connected to CrossRef
000878597 7001_ $$0P:(DE-HGF)0$$aBungert‐Plümke, Stefanie$$b1
000878597 7001_ $$0P:(DE-Juel1)131923$$aFranzen, Arne$$b2
000878597 7001_ $$0P:(DE-HGF)0$$aMahorivska, Iryna$$b3
000878597 7001_ $$0P:(DE-Juel1)159433$$aMusset, Boris$$b4$$eCorresponding author
000878597 773__ $$0PERI:(DE-600)2172518-4$$a10.1111/febs.15291$$gp. febs.15291$$n22$$p4996-5018$$tThe FEBS journal$$v287$$x1742-4658$$y2020
000878597 8564_ $$uhttps://juser.fz-juelich.de/record/878597/files/febs.15291.pdf$$yOpenAccess
000878597 909CO $$ooai:juser.fz-juelich.de:878597$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000878597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131923$$aForschungszentrum Jülich$$b2$$kFZJ
000878597 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000878597 9141_ $$y2020
000878597 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000878597 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878597 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFEBS J : 2018$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878597 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878597 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878597 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878597 920__ $$lyes
000878597 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
000878597 980__ $$ajournal
000878597 980__ $$aVDB
000878597 980__ $$aUNRESTRICTED
000878597 980__ $$aI:(DE-Juel1)IBI-1-20200312
000878597 9801_ $$aFullTexts