000878605 001__ 878605
000878605 005__ 20240712113044.0
000878605 0247_ $$2doi$$a10.1149/2.0671707jes
000878605 0247_ $$2ISSN$$a0013-4651
000878605 0247_ $$2ISSN$$a0096-4743
000878605 0247_ $$2ISSN$$a0096-4786
000878605 0247_ $$2ISSN$$a1945-6859
000878605 0247_ $$2ISSN$$a1945-7111
000878605 0247_ $$2ISSN$$a2002-2015
000878605 0247_ $$2ISSN$$a2156-7395
000878605 0247_ $$2WOS$$aWOS:000404397300016
000878605 037__ $$aFZJ-2020-02943
000878605 082__ $$a660
000878605 1001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b0
000878605 245__ $$aInfluence of LiPF 6 on the Aluminum Current Collector Dissolution in High Voltage Lithium Ion Batteries after Long-Term Charge/Discharge Experiments
000878605 260__ $$aBristol$$bIOP Publishing$$c2017
000878605 3367_ $$2DRIVER$$aarticle
000878605 3367_ $$2DataCite$$aOutput Types/Journal article
000878605 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607096868_15664
000878605 3367_ $$2BibTeX$$aARTICLE
000878605 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878605 3367_ $$00$$2EndNote$$aJournal Article
000878605 520__ $$aThe long-term influence of the most commonly used conducting salt in electrolyte formulations, lithium hexafluorophosphate, on the aluminum current collector stability in high voltage lithium ion batteries was investigated. By means of different surface sensitive techniques (scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy), after 1003 simulated charge/discharge cycles, anodic aluminum dissolution was found to take place at elevated potential (4.95 V vs. Li/Li+) but only to a minor extent. Pitting of the Al collector could be assessed in the nanometer range. Furthermore, it could be revealed that local pit formation is related to local "native" grooves on the aluminum foil, which develop during the production process of the aluminum foil. The obtained results were evaluated and compared to a reference electrolyte containing the alternative conducting salt lithium bis(trifluoromethanesulfonyl)imide. Our findings imply two possible mechanisms for the occurring Al dissolution behavior at elevated potentials. Either, an accelerated aluminum dissolution process, or a continuous passivation/LiPF6-decomposition process.
000878605 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000878605 588__ $$aDataset connected to CrossRef
000878605 7001_ $$0P:(DE-HGF)0$$aRöser, Stephan$$b1
000878605 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b2
000878605 7001_ $$0P:(DE-HGF)0$$aJanßen, Pia$$b3
000878605 7001_ $$0P:(DE-HGF)0$$aCao, Xia$$b4
000878605 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b5
000878605 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b6$$ufzj
000878605 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b7$$eCorresponding author
000878605 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0671707jes$$gVol. 164, no. 7, p. A1474 - A1479$$n7$$pA1474 - A1479$$tJournal of the Electrochemical Society$$v164$$x1945-7111$$y2017
000878605 8564_ $$uhttps://juser.fz-juelich.de/record/878605/files/Streipert_2017_J._Electrochem._Soc._164_A1474.pdf$$yRestricted
000878605 909CO $$ooai:juser.fz-juelich.de:878605$$pVDB
000878605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b2$$kFZJ
000878605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b6$$kFZJ
000878605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
000878605 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000878605 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2018$$d2020-02-27
000878605 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000878605 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000878605 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000878605 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000878605 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000878605 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000878605 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000878605 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-27
000878605 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000878605 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000878605 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000878605 980__ $$ajournal
000878605 980__ $$aVDB
000878605 980__ $$aI:(DE-Juel1)IEK-12-20141217
000878605 980__ $$aUNRESTRICTED
000878605 981__ $$aI:(DE-Juel1)IMD-4-20141217