001     878605
005     20240712113044.0
024 7 _ |a 10.1149/2.0671707jes
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-6859
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2002-2015
|2 ISSN
024 7 _ |a 2156-7395
|2 ISSN
024 7 _ |a WOS:000404397300016
|2 WOS
037 _ _ |a FZJ-2020-02943
082 _ _ |a 660
100 1 _ |a Streipert, Benjamin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Influence of LiPF 6 on the Aluminum Current Collector Dissolution in High Voltage Lithium Ion Batteries after Long-Term Charge/Discharge Experiments
260 _ _ |a Bristol
|c 2017
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607096868_15664
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The long-term influence of the most commonly used conducting salt in electrolyte formulations, lithium hexafluorophosphate, on the aluminum current collector stability in high voltage lithium ion batteries was investigated. By means of different surface sensitive techniques (scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy), after 1003 simulated charge/discharge cycles, anodic aluminum dissolution was found to take place at elevated potential (4.95 V vs. Li/Li+) but only to a minor extent. Pitting of the Al collector could be assessed in the nanometer range. Furthermore, it could be revealed that local pit formation is related to local "native" grooves on the aluminum foil, which develop during the production process of the aluminum foil. The obtained results were evaluated and compared to a reference electrolyte containing the alternative conducting salt lithium bis(trifluoromethanesulfonyl)imide. Our findings imply two possible mechanisms for the occurring Al dissolution behavior at elevated potentials. Either, an accelerated aluminum dissolution process, or a continuous passivation/LiPF6-decomposition process.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Röser, Stephan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 2
700 1 _ |a Janßen, Pia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cao, Xia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wagner, Ralf
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 6
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|e Corresponding author
773 _ _ |a 10.1149/2.0671707jes
|g Vol. 164, no. 7, p. A1474 - A1479
|0 PERI:(DE-600)2002179-3
|n 7
|p A1474 - A1479
|t Journal of the Electrochemical Society
|v 164
|y 2017
|x 1945-7111
856 4 _ |u https://juser.fz-juelich.de/record/878605/files/Streipert_2017_J._Electrochem._Soc._164_A1474.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:878605
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)171204
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-27
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21