000878608 001__ 878608
000878608 005__ 20240712113044.0
000878608 0247_ $$2doi$$a10.1021/acsaem.0c00041
000878608 0247_ $$2Handle$$a2128/29465
000878608 0247_ $$2altmetric$$aaltmetric:77803504
000878608 0247_ $$2WOS$$aWOS:000529190300007
000878608 037__ $$aFZJ-2020-02946
000878608 082__ $$a540
000878608 1001_ $$0P:(DE-Juel1)169878$$aHomann, Gerrit$$b0
000878608 245__ $$aHigh-Voltage All-Solid-State Lithium Battery with Sulfide-Based Electrolyte: Challenges for the Construction of a Bipolar Multicell Stack and How to Overcome Them
000878608 260__ $$aWashington, DC$$bACS Publications$$c2020
000878608 3367_ $$2DRIVER$$aarticle
000878608 3367_ $$2DataCite$$aOutput Types/Journal article
000878608 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639556943_11312
000878608 3367_ $$2BibTeX$$aARTICLE
000878608 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878608 3367_ $$00$$2EndNote$$aJournal Article
000878608 520__ $$aSolid electrolytes can be the key for the desired goal of increased safety and specific energies of batteries. On a cell and battery pack level, the all-solid nature and the absence of liquid electrolyte leakage are considered to enable safe and effective performance realization of the rechargeable Li metal electrode and bipolar cell stacking, respectively. Well performing Li metal cells with high-energy/voltage positive electrodes such as LiNi0.6Mn0.2Co0.2O2 (NMC622) can already be cycled when using a blend of the sulfidic solid electrolyte such as β-Li3PS4 (LPS) and Li salt in poly(ethylene)oxide (PEO). However, operation of a bipolar stack using these cell materials utilizing the common Al/Cu clad as bipolar plate results in an immediate short circuit, because of an ionic intercell connection via molten LiTFSI/PEO. Oversizing the area of the bipolar plates can prevent such a short circuit and indeed enables a partial charge of the stack, but after a certain time, the next cell failure is observed, consisting of severe, sulfur caused, corrosion of copper which was used as metal substrate for the lithium anode. The exchange of the sulfide incompatible Cu collector by (also area-oversized) stainless steel can finally enable a failure-free performance of the bipolar cell stack, which performs similar to a single cell with regard to cycling stability.
000878608 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000878608 588__ $$aDataset connected to CrossRef
000878608 7001_ $$0P:(DE-Juel1)172048$$aMeister, Paul$$b1
000878608 7001_ $$0P:(DE-Juel1)181055$$aStolz, Lukas$$b2
000878608 7001_ $$0P:(DE-Juel1)176761$$aBrinkmann, Jan Paul$$b3
000878608 7001_ $$0P:(DE-HGF)0$$aKulisch, Jörn$$b4
000878608 7001_ $$0P:(DE-HGF)0$$aAdermann, Torben$$b5
000878608 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$eCorresponding author
000878608 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b7$$eCorresponding author
000878608 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.0c00041$$gVol. 3, no. 4, p. 3162 - 3168$$n4$$p3162 - 3168$$tACS applied energy materials$$v3$$x2574-0962$$y2020
000878608 8564_ $$uhttps://juser.fz-juelich.de/record/878608/files/Finale%20version%20Sulfidic%20Triplestack.docx.pdf$$yPublished on 2020-03-13. Available in OpenAccess from 2021-03-13.
000878608 8564_ $$uhttps://juser.fz-juelich.de/record/878608/files/acsaem.0c00041-1.pdf$$yRestricted
000878608 909CO $$ooai:juser.fz-juelich.de:878608$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169878$$aForschungszentrum Jülich$$b0$$kFZJ
000878608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181055$$aForschungszentrum Jülich$$b2$$kFZJ
000878608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176761$$aForschungszentrum Jülich$$b3$$kFZJ
000878608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000878608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b7$$kFZJ
000878608 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000878608 9132_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000878608 9141_ $$y2020
000878608 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878608 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-09
000878608 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-09
000878608 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-01-09
000878608 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-09
000878608 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000878608 9801_ $$aFullTexts
000878608 980__ $$ajournal
000878608 980__ $$aVDB
000878608 980__ $$aUNRESTRICTED
000878608 980__ $$aI:(DE-Juel1)IEK-12-20141217
000878608 981__ $$aI:(DE-Juel1)IMD-4-20141217