001     878608
005     20240712113044.0
024 7 _ |a 10.1021/acsaem.0c00041
|2 doi
024 7 _ |a 2128/29465
|2 Handle
024 7 _ |a altmetric:77803504
|2 altmetric
024 7 _ |a WOS:000529190300007
|2 WOS
037 _ _ |a FZJ-2020-02946
082 _ _ |a 540
100 1 _ |a Homann, Gerrit
|0 P:(DE-Juel1)169878
|b 0
245 _ _ |a High-Voltage All-Solid-State Lithium Battery with Sulfide-Based Electrolyte: Challenges for the Construction of a Bipolar Multicell Stack and How to Overcome Them
260 _ _ |a Washington, DC
|c 2020
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639556943_11312
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid electrolytes can be the key for the desired goal of increased safety and specific energies of batteries. On a cell and battery pack level, the all-solid nature and the absence of liquid electrolyte leakage are considered to enable safe and effective performance realization of the rechargeable Li metal electrode and bipolar cell stacking, respectively. Well performing Li metal cells with high-energy/voltage positive electrodes such as LiNi0.6Mn0.2Co0.2O2 (NMC622) can already be cycled when using a blend of the sulfidic solid electrolyte such as β-Li3PS4 (LPS) and Li salt in poly(ethylene)oxide (PEO). However, operation of a bipolar stack using these cell materials utilizing the common Al/Cu clad as bipolar plate results in an immediate short circuit, because of an ionic intercell connection via molten LiTFSI/PEO. Oversizing the area of the bipolar plates can prevent such a short circuit and indeed enables a partial charge of the stack, but after a certain time, the next cell failure is observed, consisting of severe, sulfur caused, corrosion of copper which was used as metal substrate for the lithium anode. The exchange of the sulfide incompatible Cu collector by (also area-oversized) stainless steel can finally enable a failure-free performance of the bipolar cell stack, which performs similar to a single cell with regard to cycling stability.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Meister, Paul
|0 P:(DE-Juel1)172048
|b 1
700 1 _ |a Stolz, Lukas
|0 P:(DE-Juel1)181055
|b 2
700 1 _ |a Brinkmann, Jan Paul
|0 P:(DE-Juel1)176761
|b 3
700 1 _ |a Kulisch, Jörn
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Adermann, Torben
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
|e Corresponding author
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acsaem.0c00041
|g Vol. 3, no. 4, p. 3162 - 3168
|0 PERI:(DE-600)2916551-9
|n 4
|p 3162 - 3168
|t ACS applied energy materials
|v 3
|y 2020
|x 2574-0962
856 4 _ |y Published on 2020-03-13. Available in OpenAccess from 2021-03-13.
|u https://juser.fz-juelich.de/record/878608/files/Finale%20version%20Sulfidic%20Triplestack.docx.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/878608/files/acsaem.0c00041-1.pdf
909 C O |o oai:juser.fz-juelich.de:878608
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169878
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)181055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176761
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171865
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2020
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-09
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21