000878609 001__ 878609
000878609 005__ 20240712113044.0
000878609 0247_ $$2doi$$a10.1016/j.isci.2020.101225
000878609 0247_ $$2Handle$$a2128/26355
000878609 0247_ $$2altmetric$$aaltmetric:83385079
000878609 0247_ $$2pmid$$apmid:32563154
000878609 0247_ $$2WOS$$aWOS:000548211500007
000878609 037__ $$aFZJ-2020-02947
000878609 082__ $$a050
000878609 1001_ $$0P:(DE-Juel1)169878$$aHomann, Gerrit$$b0
000878609 245__ $$aElimination of “Voltage Noise” of Poly (Ethylene Oxide)-Based Solid Electrolytes in High-Voltage Lithium Batteries: Linear versus Network Polymers
000878609 260__ $$aSt. Louis$$bElsevier$$c2020
000878609 3367_ $$2DRIVER$$aarticle
000878609 3367_ $$2DataCite$$aOutput Types/Journal article
000878609 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607095819_15457
000878609 3367_ $$2BibTeX$$aARTICLE
000878609 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878609 3367_ $$00$$2EndNote$$aJournal Article
000878609 520__ $$aFrequently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) reveal a failure with high-voltage electrodes, e.g. LiNi0.6Mn0.2Co0.2O2 in lithium metal batteries, which can be monitored as an arbitrary appearance of a “voltage noise” during charge and can be attributed to Li dendrite-induced cell micro short circuits. This failure behavior disappears when incorporating linear PEO-based SPE in a semi-interpenetrating network (s-IPN) and even enables an adequate charge/discharge cycling performance at 40°C. An impact of any electrolyte oxidation reactions on the performance difference can be excluded, as both SPEs reveal similar (high) bulk oxidation onset potentials of ≈4.6 V versus Li|Li+. Instead, improved mechanical properties of the SPE, as revealed by compression tests, are assumed to be determining, as they mechanically better withstand Li dendrite penetration and better maintain the distance of the two electrodes, both rendering cell shorts less likely.
000878609 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000878609 588__ $$aDataset connected to CrossRef
000878609 7001_ $$0P:(DE-Juel1)181055$$aStolz, Lukas$$b1$$ufzj
000878609 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$eCorresponding author
000878609 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b3$$eCorresponding author
000878609 773__ $$0PERI:(DE-600)2927064-9$$a10.1016/j.isci.2020.101225$$gVol. 23, no. 6, p. 101225 -$$n6$$p101225 -$$tiScience$$v23$$x2589-0042$$y2020
000878609 8564_ $$uhttps://juser.fz-juelich.de/record/878609/files/PIIS2589004220304107.pdf$$yOpenAccess
000878609 8564_ $$uhttps://juser.fz-juelich.de/record/878609/files/PIIS2589004220304107.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878609 909CO $$ooai:juser.fz-juelich.de:878609$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169878$$aForschungszentrum Jülich$$b0$$kFZJ
000878609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181055$$aForschungszentrum Jülich$$b1$$kFZJ
000878609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
000878609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b3$$kFZJ
000878609 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000878609 9141_ $$y2020
000878609 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000878609 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878609 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-01-02
000878609 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-02
000878609 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-02
000878609 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-02
000878609 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878609 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-02
000878609 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-02
000878609 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-02
000878609 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000878609 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-02
000878609 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000878609 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000878609 9801_ $$aFullTexts
000878609 980__ $$ajournal
000878609 980__ $$aVDB
000878609 980__ $$aUNRESTRICTED
000878609 980__ $$aI:(DE-Juel1)IEK-12-20141217
000878609 981__ $$aI:(DE-Juel1)IMD-4-20141217