001     878610
005     20240712113044.0
024 7 _ |a 10.1021/acs.chemmater.0c01952
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a 2128/29467
|2 Handle
024 7 _ |a altmetric:86841896
|2 altmetric
024 7 _ |a WOS:000562136900001
|2 WOS
037 _ _ |a FZJ-2020-02948
082 _ _ |a 540
100 1 _ |a Klein, Sven
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Identical Materials but Different Effects of Film-Forming Electrolyte Additives in Li Ion Batteries: Performance of a Benchmark System as the Key
260 _ _ |a Washington, DC
|c 2020
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639561386_11312
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The further increase of practically usable specific energies in lithium ion batteries (LIBs) can be realized by minimizing the specific capacity losses, e.g., via electrolyte additives. However, the interpretation of research results of additive effects on the performance is challenging, because even for identical materials and conditions different effects on performance are observed, rendering the validity, evaluation, and comparison of electrolyte additives difficult. In this work, we show that such ambiguity can be significantly influenced by the quality of the used benchmark system, i.e., the cell/electrolyte system without additive. The additive effects are low when the used benchmark system performs well. Vice versa, in poor performing cell/electrolyte systems, the effect of the same additive appears strong. Hidden and inconspicuous cell parameters, e.g., the type of graphite electrode preparation prior to cell assembly (e.g., calendered vs hand-pressed graphite electrodes), can significantly affect the performance of the benchmark system and, thus, in turn the resulting additive effect. It is shown that calendered graphite electrodes reveal a better performance in the LIB cell than hand-pressed graphites but have a lower relative additive effect (i.e., lower capacity increase), while absolute performance and practical relevance of the data is better. Overall, for a valid and systematic additive research the use of an application-oriented and, thus, optimized benchmark system is recommended.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Borzutzki, Kristina
|0 P:(DE-Juel1)171270
|b 1
700 1 _ |a Schneider, Patricia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fromm, Olga
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Reiter, Jakub
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fan, Quan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|e Corresponding author
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.0c01952
|g Vol. 32, no. 15, p. 6279 - 6284
|0 PERI:(DE-600)1500399-1
|n 15
|p 6279 - 6284
|t Chemistry of materials
|v 32
|y 2020
|x 1520-5002
856 4 _ |y Published on 2020-07-16. Available in OpenAccess from 2021-07-16.
|u https://juser.fz-juelich.de/record/878610/files/Finale%20Version%20%20Influence%20of%20additives%20in%20full%20cells.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/878610/files/acs.chemmater.0c01952-1.pdf
909 C O |o oai:juser.fz-juelich.de:878610
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171270
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171865
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-11
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2018
|d 2020-01-11
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CHEM MATER : 2018
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-11
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-11
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21