000878612 001__ 878612
000878612 005__ 20230522110532.0
000878612 0247_ $$2doi$$a10.1111/jace.16843
000878612 0247_ $$2ISSN$$a0002-7820
000878612 0247_ $$2ISSN$$a1551-2916
000878612 0247_ $$2Handle$$a2128/25553
000878612 0247_ $$2WOS$$aWOS:000492529100001
000878612 037__ $$aFZJ-2020-02950
000878612 041__ $$aEnglish
000878612 082__ $$a660
000878612 1001_ $$00000-0001-8288-5495$$aParras, Jana P.$$b0$$eCorresponding author
000878612 245__ $$aThe grain‐boundary resistance of CeO 2 ceramics: A combined microscopy‐spectroscopy‐simulation study of a dilute solution
000878612 260__ $$aWesterville, Ohio$$bSoc.$$c2020
000878612 3367_ $$2DRIVER$$aarticle
000878612 3367_ $$2DataCite$$aOutput Types/Journal article
000878612 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599479580_14807
000878612 3367_ $$2BibTeX$$aARTICLE
000878612 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878612 3367_ $$00$$2EndNote$$aJournal Article
000878612 520__ $$aWeakly acceptor‐doped ceria ceramics were characterized structurally and compositionally with advanced transmission electron microscopy (TEM) techniques and electrically with electrochemical impedance spectroscopy (EIS). The grain boundaries studied with TEM were found to be free of second phases. The impedance spectra, acquired in the range 703 ≤ T/K ≤ 893 in air, showed several arcs that were analyzed in terms of bulk, grain‐boundary, and electrode responses. We ascribed the grain‐boundary resistance to the presence of space‐charge layers. Continuum‐level simulations were used to calculate charge‐carrier distributions (of acceptor cations, oxygen vacancies, and electrons) in these space‐charge layers. The acceptor cations were assumed to be mobile at high (sintering) temperatures but immobile at the temperatures of the EIS measurements. Space‐charge formation was assumed to be driven by the segregation of oxygen vacancies to the grain‐boundary core. Comparisons of data from the simulations and from the EIS measurements yielded space‐charge potentials and the segregation energy of vacancies to the grain‐boundary core. The space‐charge potentials from the simulations are compared with values obtained by applying the standard, analytical (Mott–Schottky and Gouy–Chapman) expressions. The importance of modelling space‐charge layers from the thermodynamic level is demonstrated.
000878612 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878612 536__ $$0G:(GEPRIS)274005202$$aDFG project 274005202 - SPP 1959: Manipulation of matter controlled by electric and magnetic fields: Towards novel synthesis and processing routes of inorganic materials (274005202)$$c274005202$$x1
000878612 536__ $$0G:(GEPRIS)319339707$$aDFG project 319339707 - Diffusionsgesteuerte Prozesse in polykristallinem Ceroxid: Kombinierte Wirkung von elektrischem Feld und mechanischer Belastung $$c319339707$$x2
000878612 588__ $$aDataset connected to CrossRef
000878612 7001_ $$0P:(DE-Juel1)171807$$aCao, Chen$$b1
000878612 7001_ $$0P:(DE-Juel1)171624$$aMa, Zheng$$b2
000878612 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b3
000878612 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b4$$ufzj
000878612 7001_ $$0P:(DE-HGF)0$$aDunin‐Borkowski, Rafal$$b5
000878612 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6
000878612 7001_ $$00000-0001-7721-4128$$aDe Souza, Roger A.$$b7
000878612 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.16843$$gVol. 103, no. 3, p. 1755 - 1764$$n3$$p1755 - 1764$$tJournal of the American Ceramic Society$$v103$$x1551-2916$$y2020
000878612 8564_ $$uhttps://juser.fz-juelich.de/record/878612/files/jace.16843.pdf$$yOpenAccess
000878612 8564_ $$uhttps://juser.fz-juelich.de/record/878612/files/jace.16843.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878612 909CO $$ooai:juser.fz-juelich.de:878612$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171807$$aForschungszentrum Jülich$$b1$$kFZJ
000878612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171624$$aForschungszentrum Jülich$$b2$$kFZJ
000878612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich$$b3$$kFZJ
000878612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b4$$kFZJ
000878612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
000878612 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878612 9141_ $$y2020
000878612 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2018$$d2020-02-26
000878612 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000878612 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878612 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878612 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878612 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000878612 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878612 920__ $$lyes
000878612 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878612 980__ $$ajournal
000878612 980__ $$aVDB
000878612 980__ $$aUNRESTRICTED
000878612 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878612 9801_ $$aFullTexts