000878613 001__ 878613
000878613 005__ 20210130005705.0
000878613 0247_ $$2doi$$a10.1122/8.0000085
000878613 0247_ $$2ISSN$$a0097-0360
000878613 0247_ $$2ISSN$$a0148-6055
000878613 0247_ $$2ISSN$$a1520-8516
000878613 0247_ $$2Handle$$a2128/25555
000878613 0247_ $$2WOS$$aWOS:000566389200001
000878613 037__ $$aFZJ-2020-02951
000878613 041__ $$aEnglish
000878613 082__ $$a530
000878613 1001_ $$0P:(DE-HGF)0$$aSingh, Sunil P.$$b0$$eCorresponding author
000878613 245__ $$aFlow driven transitions of polyelectrolytes
000878613 260__ $$bInst.$$c2020
000878613 3367_ $$2DRIVER$$aarticle
000878613 3367_ $$2DataCite$$aOutput Types/Journal article
000878613 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599480421_14836
000878613 3367_ $$2BibTeX$$aARTICLE
000878613 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878613 3367_ $$00$$2EndNote$$aJournal Article
000878613 520__ $$aThe nonequilibrium properties of uniformly charged linear polymers in the presence of explicit counterions under shear flow are studied by coarse-grained mesoscale hydrodynamics simulations. The conformational properties of the polyelectrolyte (PE) are quantified by the gyration tensor, the distribution of the end-to-end distance, and alignment with the flow, which display rather universal behavior for small and moderate electrostatic interaction strengths in the regime of condensed counterions. In the limit of strong counterion condensation, shear flow leads to a globule-coil transition and polymer stretching, associated with an increase of the effective PE charge. The polyelec- trolytes exhibit a pronounced tumbling motion with cyclic stretched and collapsed conformations. The average tumbling-time period decreases with increasing shear rate by a power-law with the exponent -2/3 for PEs in the coiled state. The tumbling time exhibits a pla- teaulike regime over nearly a decade of shear rates for PEs in the globular state. In addition, we identify various characteristic PE struc- tures under flow in the globule and coil limits determined by the condensed counterions.
000878613 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000878613 588__ $$aDataset connected to CrossRef
000878613 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b1$$eLast author
000878613 773__ $$0PERI:(DE-600)1461060-7$$a10.1122/8.0000085$$gVol. 64, no. 5, p. 1121 - 1131$$n5$$p1121 - 1131$$tJournal of rheology$$v64$$x1520-8516$$y2020
000878613 8564_ $$uhttps://juser.fz-juelich.de/record/878613/files/JOR20-AR-00136.pdf$$yOpenAccess
000878613 8564_ $$uhttps://juser.fz-juelich.de/record/878613/files/JOR20-AR-00136.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878613 909CO $$ooai:juser.fz-juelich.de:878613$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878613 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000878613 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Indian Institute Of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India$$b0
000878613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b1$$kFZJ
000878613 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000878613 9141_ $$y2020
000878613 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000878613 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000878613 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-12
000878613 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000878613 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-12
000878613 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000878613 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000878613 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000878613 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878613 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000878613 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-12$$wger
000878613 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000878613 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000878613 920__ $$lyes
000878613 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000878613 9201_ $$0I:(DE-82)080008_20150909$$kJARA-SOFT$$lJARA-SOFT$$x1
000878613 980__ $$ajournal
000878613 980__ $$aVDB
000878613 980__ $$aUNRESTRICTED
000878613 980__ $$aI:(DE-Juel1)IAS-2-20090406
000878613 980__ $$aI:(DE-82)080008_20150909
000878613 9801_ $$aFullTexts