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The nonequilibrium properties of uniformly charged linear polymers in the presence of explicit counterions under

shear flow are studied by coarse-grained mesoscale hydrodynamics simulations. The conformational properties of the

polyelectrolyte (PE) are quantified by the gyration tensor, the distribution of the end-to-end distance, and alignment with

the flow, which display rather universal behavior for small and moderate electrostatic interaction strengths in regime of

condensed counterions. In the limit of strong counterion condensation, shear flow leads to a globule-coil transition and

polymer stretching, associated with an increase of the effective PE charge. The polyelectrolytes exhibit a pronounced

tumbling motion with cyclic stretched and collapsed conformations. The average tumbling-time period decreases with

increasing shear rate by a power-law with the exponent −2/3 for PEs in the coiled state. The tumbling time exhibits

a plateau-like regime over nearly a decade of shear rates for PEs in the globular state. In addition, we identify various

characteristic PE structures under flow in the globule and coil limits determined by the condensed counterions.

I. INTRODUCTION

Soft polymeric macromolecules respond to external per-

turbations in an intriguing way, and exhibit numerous fea-

tures which are non-intuitive and distinct from those at

equilibrium.1–4 In particular, a non-monotonic structural re-

sponse of polymers and ultra-soft colloids under sedimenta-

tion has been observed5–9, molecular mass independent mo-

bilities of charged polymers4,10–14, aperiodic tumbling dy-

namics under linear flow1,2,15–20, globule-to-coil transitions

or vice-versa21–23, migration of polymers toward a wall in

parabolic flow24,25, and many more effects. The understand-

ing of the various non-equilibrium characteristics of flexi-

ble macromolecules under flow is vital for numerous rea-

sons, viz. rheological properties of polymer solutions26,27,

transport through nanopores4,28, oil recovery29, biomedical

applications21,22,30–33, etc.

There is a large amount of literature on the flow

behavior of neutral dilute and semidilute polymer

suspensions1,2,15–18,34–37, which unveils their nonequi-

librium structural and dynamical properties. A particular

example is the shear driven globule-to-coil transition of the

von Willebrand factor, which plays a crucial role in the

blood clotting in narrow arteries at relatively high shear-

rates (γ̇ = 104s−1),21,22,33 where the von Willebrand factor

fibers suddenly open up in the stretched form and undergo

large-scale conformational changes. The open-state mediates

adhesion and aggregation via cross-linking of platelets on the

surface of arteries21,33.

Various approaches have been applied to shed light onto

the equilibrium and nonequilibrium physical aspects of poly-

electrolytes (PE). In a simplified description, electrostatic

interactions are accounted for by the Debye-Hückel poten-

tial taking counterions into account implicitly only4,38–42.
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Moreover, more detailed bead-spring polyelectrolyte mod-

els are employed, which take counterions and long-range

Coulomb interactions explicitly into account4,11–14,23,28,42–47.

Specifically, the dependence of the nonmonotonic equilib-

rium structural properties on the solvent quality28,43–46, the

bulk electrophoretic response with molecular-mass indepen-

dent mobility4,11–14, as well as confinement effects on the

structure and relaxation behavior of polyelectrolytes have

been addressed47–50. Polyelectrolytes confined in a chan-

nel and exposed to pressure-driven flow reveal transverse

migration38,51–53. In addition, the conformational proper-

ties of polyelectrolyte chains adsorbed on surfaces has been

studied39–41,54,55, and tank-treading and tumbling dynamics

of circular polyelectrolyte in extensional and linear flow has

been observed56,57. However, studies on the behavior of bulk

polyelectrolytes under shear flow are rare57,58, in particular,

the influence of explicit counterions and the coupling of long-

range electrostatic and hydrodynamic interactions are unre-

solved. The present study sheds light onto the coupling of

polyelectrolyte conformations, its nonequilibrium dynamics,

and charge effects in linear shear flow, aspects relevant for a

wide class of biopolymers58 and synthetic polymers.

In this article, we present a detailed study of the struc-

tural and dynamical properties of polyelectrolytes in presence

of counterions under shear flow. We apply a hybrid coarse-

grained simulation approach, combining molecular dynam-

ics simulations of the PE and its counterions with the mul-

tiparticle collision dynamics method for the explicit fluid59,60.

In particular, this approach captures the fluid-mediated in-

teractions between a PE and its counterions. Moreover,

long-range electrostatic interactions are taken into account,

which tightly couple the PE and counterion structure and

dynamics14,28,43,44. The long-range nature of electrostatic and

fluid-mediated interactions, on the one hand, renders a de-

tailed understanding of the multicomponent system rather in-

tricate, but, on the other hand, yields features, which are ab-

sent in a comparable uncharged system.

Polyelectrolytes show large-scale conformational changes

under shear-flow. Yet, we find that structural and dynami-
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The dynamics of the N f point-particles of the MPC fluid

proceeds in two steps, streaming and collision59,60,67. In the

streaming step, the MPC particles move ballistically over a

time interval h and their positions, rk, are update as rk(t +
h) = rk(t) + hvk(t), with t the time and vk the velocity of

particle k (k = 1, . . . ,N f ). In the collision step, MPC parti-

cles interact with each other as well as with monomers and

counterions. For this purpose, all particles—MPC particles,

monomers, and counterions—are sorted into cubic cells of

side length a of a collision lattice. Their relative velocities

with respect to the center-of-mass velocity of the cell are ro-

tated by an angle α around a randomly oriented axis indepen-

dently for every cell, i.e.,

vk(t +h) = vk(t)+(A (α)−I )(vk(t)−vcm(t)), (4)

where A is the rotation and I is the unit matrix.67,68 The

center-of-mass velocity of the MPC cell of particle k is

vcm(t) =
∑

Nc
i=1 mvi(t)+∑

Nm
c

j=1 MV j(t)

mNc +MNm
c

(5)

for the Nc solvent particles (MPC solvent) and the Nm
c solute

particles (monomers and/or counterions) of mass m and M, re-

spectively. Rotation of the solute particle velocities according

to Eq. (5) yields momentum exchange between the MPC fluid,

the embedded PE and counterions, and vice versa,59,60,67 pro-

viding the correct polymer dynamics13,60. The discretization

of space in collision cells implies violation if Galilean invari-

ance, which is reestablished by performing a random shift of

the collision lattice69.

The linear shear flow of the form vx = γ̇y is imposed by

Lees-Edwards boundary conditions.34,65,70 Here, images of

the primary simulation box along the gradient direction move

with constant relative velocity vx = nyγ̇Ly along the flow di-

rection, where Ly is the box length in the gradient direction.

When a particle (MPC solvent, monomer, counterion) leaves

the primary box along the gradient direction, it is reinserted

at the opposite side with a shifted position and the shifted ve-

locity ±γ̇Ly.65,67,70. In the other spatial directions, boundary

conditions are identical to the no-flow case. An external force

imposing flow results in an increase of the temperature in the

system. To maintain a desired temperature, a local thermostat

is employed, which takes out the excess energy locally and

ensures a Maxwellian velocity distribution67.

C. Simulation Parameters

Dimensionless quantities are introduced by scaling length

by the bond length l0, energy by kBT , and time by τ =
√

ml2
0/kBT , where kB is the Boltzmann factor and T the tem-

perature. We choose the collision time h = 0.1τ , the rota-

tion angel α = 130◦, and the mean number of MPC parti-

cles per collision cell 〈Nc〉 = 10, which corresponds to the

solvent viscosity η = 8.7
√

mkBT/l460,71,72. Moreover, we

set m = 1, M = 10m, a = l0, σ/l0 = 0.8, εLJ/kBT = 1,

ks/(kBT/l2
0) = 103, and the time step for the integration of

Newtons equations of motion to 5×10−3τ . The choice of so-

lute mass M and collision time h ensures a suitable hydrody-

namic coupling between the solute and MPC fluid particles60.

The strength of the Coulomb interaction is measured by the

Bjerrum length lB, which is in units of l0, lB = e2/(εkBT l0).
We consider the range of Bjerrum lengths 1 ≤ lB ≤ 20, where

the variation of lB is due to variations in the dielectric constant

of the medium. All the simulations are performed for at least

1.25× 105τ time units after equilibration of the structure. A

cubic simulation box of length L is used, where L/l0 = 50

for Nm = 50 and L/l0 = 64 for Nm = 100. Each simulation

data point is averaged over at least 30 independent runs. If

not indicated otherwise, the results are for the polymer length

Nm = 50.

III. EQUILIBRIUM PROPERTIES

The equilibrium properties of a PE depend, in particular,

on the Bjerrum length. As a reference for the characterization

of nonequilibrium features of PEs, Fig. 2 displays the mean

square end-to-end distance 〈R2
e〉, the radius of gyration 〈R2

g〉,
as well as the relaxation times τr and τrg of these quantities,

where Re =RN(t)−R1(t) and

〈R2
g〉=

1

Nm

Nm

∑
i=1

〈(Ri −Rcm)
2〉, (6)

with the polymer center of mass Rcm. As is well know, in

dilute solution 〈R2
e〉 and 〈R2

g〉 increase with increasing lB until

counterion condensation sets in at lB ≈ 1; a further increase,

lB > 1, leads to shrinkage of the PE.43,45,46 In the limit of

strong electrostatic interactions, lB > 10, the PE attains a glob-

ular structure, which exhibits the weak dependence Rg ∼ l
−1/5
B

on the Bjerrum length.45

The longest PE relaxation time follows from the end-to-

end vector correlation function Ce(t) = 〈R̂e(t) · R̂e(0)〉 (here

R̂e =Re/|Re|), which decays exponentially with the charac-

teristic time τr. Figure 2 displays relaxation times as function

of Bjerrum length. The relaxation time rapidly decreases with

increasing lB as the globular state is approached. Apparently,

in the globular regime, τr nearly saturates, as a consequence

of small variations of end-to-end distance in the compact and

dense state.

Alternatively, a relaxation time can be determined from the

fluctuations of the radius of gyration via the correlation func-

tion

Cg(t) =
〈δR2

g(t)δR2
g(0)〉

〈δR2
g(t)〉〈δR2

g(0)〉
= exp(−t/τrg), (7)

where δR2
g(t) = R2

g(t)− 〈R2
g〉. Interestingly, the relaxation

time τrg exhibits a non-monotonic dependence on lB (cf.

Fig. 2). In the limit of small lB, τrg grows and after reach-

ing a maximum at lB ≈ 5, it declines while the PE as-

sumes the globular state. Naturally, τr is always larger, be-

cause it characterizes relaxation on larger scales. The ini-

tial growth of τrg reflects the small structural fluctuations in
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FIG. 2. Relaxation times τr and τrg of the radius-of gyration 〈R2
g〉 and

the end-to-distance 〈R2
e〉, respectively, of PEs as a function of Bjer-

rum length lB. The inset shows the mean square radius-of-gyration

(•) and the mean square end-to-end distance (�) of the PE as a func-

tion of lB.

the extended state. The fluctuations increase with increase of

lB, since counterion-mediated monomer-monomer attraction

leads to more compact conformations. However, the fluctua-

tions of the charge distribution implies considerable variation

in the repulsive monomer-monomer Coulomb interaction with

correspondingly enhanced conformational fluctuations. The

counterion fluctuations decrease with increasing lB, which im-

plies a reduction of τrg in the globule limit, and also a slower

drop of Rg.45

IV. FLOW-INDUCED STRUCTURAL PROPERTIES

Polyelectrolytes show substantial conformational changes

in response to the shear flow, along with a strong flow align-

ment. In particular, the PE conformations at large lB are deter-

mined by its intimate coupling with condensed counterions.

A. Gyration Tensor

The shear-induced shape of the PEs is characterized by the

average radius of gyration tensor

Gαβ =
1

Nm

Nm

∑
i=1

〈δRiα δRiβ 〉, (8)

where δRiα = Riα −Rcmα is the position of the ith monomer

w.r.t. to center of mass of a PE.

Figure 3 displays the radius-of-gyration-tensor components

along the flow and vorticity direction as a function of the

Weissenberg number Wi. We use the Weissenberg number

Wi = γ̇τr to characterize the PE properties for lB < 5 and

Wi= γ̇τrg for lB > 5. With increasing Wi, Gxx swells monoton-

ically as displayed in Fig. 3(a) for ∆Gxx = Gxx−G0
xx, with G0

xx
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FIG. 3. Radius-of-gyration-tensor components (a) along the flow

direction and (b) along the gradient direction as a function of the

Weissenberg number, where the Weissenberg number is defined as

Wi = γ̇τr for lB . 5 and Wi = γ̇τrg for lB > 5, respectively. The solid

line in (a) shows a quadratic increase and that in (b) the decrease

Wi−1/2 with increasing Bjerrum length. The symbols corresponds to

lB =1 (•), 2.8(�), 5(�), 10N), 15 (H), and 20 (∗).

the radius-of-gyration-tensor component at zero shear rate.

The initial slope, ∆Gxx ∼ Wi2, agrees with that of neutral

polymers.18,34,73–75 At high shear rates, ∆Gxx approaches a

plateau. Evidently, the curves for lB < 5 exhibit universal

behavior over the full Wi range. No scaling is obtained for

lB > 5, especially for lB = 20 and Wi. 10. For lB > 10, the in-

crease in ∆Gxx is weaker over the range 1 .Wi . 10 as a con-

sequence of strong PE-counterion interactions and the glob-

ular PE conformation. In general, the globule is nonspheri-

cal and shear leads to its alignment. Only above a certain,

Bjerrum-length-dependent Weissenberg number, the globule

is extended, and for sufficiently strong flow rates the asymp-

totic plateau values of the weaker lB is reached. This transi-

tion is similar to the globule-coil transition of polymers in a

bad solvent.76 Note that ∆Gxx for lB = 10 and 15 reach the

asymptotic plateau at lower Wi = γ̇τrg than those for lB < 5

because of the different Weissenberg-number definitions.

The normalized gyration-tensor component in the shear

gradient direction, Gyy/G0
yy, decreases with increasing Weis-
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senberg number (cf. Fig. 3(b)), in a nearly universal manner

for the various lB, despite the different definitions of Wi for

lB ≶ 5, respectively. The decline of Gyy obeys the power-law

Gyy ≈Wi−1/2, comparable to that of neutral polymers.34

B. Distribution of the Polymer End-to-End Distance

The flow-induced changes of the distribution function of

the polymer end-to-end distance are illustrated in Fig. 4 and

5. As shown in Fig. 4(a), the distribution function for lB = 2.8
is close to a Gaussian at low flow strengths with a peak at

Re ≈ 24. With increasing Wi, the peak shifts to larger Re val-

ues, with the peak localized nearly at the maximum extension

of the polymer in the limit Wi ≫ 1. For lB = 10, the narrow

peak at Re ≈ 5 reflects the globular structure of the polymer by

its condensed ions. An increasing shear causes a gradual re-

duction of the peak height and the formation of a tail at larger

Re, however, no peak at large Re emerges, but the distribution

is rather flat with equal probability for nearly all end-to-end

distances. The latter suggests strong fluctuations of the end-

to-end distance.

Figure 5 displays two-dimensional probability distribution

functions in the shear-gradient plane. For lB = 1, maxima of

the end-to-end distance are clearly visible, whereas for lB = 10

and 20 the PEs are in a more globular state. The qualitative

difference between the shear-rate response at small and large

Bjerrum lengths reflects the presence of distinctly different PE

confirmations, which are governed by the condensed counte-

rions.

C. Effective Charge

Shear affects the amount of counterions in the vicinity of

the PEs and, thus, their effective charge. We define the effec-

tive charge α via the number of counterions, Na, within the

cut-off distance Rc = 2 around the various monomers, hence

α = 1 − Na/Nm. The inset of Fig. 6 displays the effective

charge of equilibrium PEs as function of lB. At smaller lB, α
is close to unity. However, in the limit lB ≫ 1, all counteri-

ons are adsorbed onto the polymer and α ≈ 0.43 Shear flow

affects the effective charge for large lB > 10 only weakly (cf.

Fig. 6). Specifically, for lB = 20, α is nearly constant and

it is akin to the equilibrium number, i.e., all counterions are

condensed. An increasing shear rate reduces the amount of

condensed counterions for moderate Bjerrum lengths. Inter-

estingly, the change of the effective charge, ∆α = α −α0, is

a non-monotonic function of the Bjerrum length, with a max-

imum in the vicinity of lB = 10.

Figure 7 depicts the counterion distribution in the shear-

gradient plane, which is reminiscent to the monomer distri-

bution of neutral polymers.20,34,63 As expected, the distribu-

tion of ions weakly aligns with the flow for small Wi = 0.3,

breaking the spherical symmetric of the system, but becomes

strongly stretched in the large-shear limit Wi > 3000, e.g., for

lB = 2.8. Overall, the counterion distribution indicates a sim-

ilar behavior as the monomers.
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FIG. 4. Distribution function P(Re) of the polymer end-to-end dis-

tance Re for the Weissenberg numbers indicated in the legends and

the Bjerrum lengths (a) lB = 2.8 and (b) lB = 10.

D. Flow Induced Alignment

Flow leads to a preferred alignment of the polyelectrolyte,

as displayed in Fig. 5, which is quantified by the angle φ be-

tween the eigenvector of the gyration tensor with the largest

eigenvalue and the flow direction and can be expressed by the

radius-of-gyration tensor components as15,34

tanφ =
2Gxy

Gxx −Gyy

. (9)

In case of a PE, the shear-induced alignment is not only gov-

erned by Wi, but also electrostatic interactions play a signif-

icant role. This is reflected in Fig. 8, with the two groups

of similarly behaving PEs, namely for lB . 5 and for lB > 5.

We like to emphasize that scaling for coiled and globular

PEs, respectively, is only obtained for the definition of the

Weissenberg number in terms of the relaxation times τr and

τrg, respectively—no scaling is obtained for lB > 5 in case

of Wi = γ̇τr. Evidently, the globular and coiled PEs exhibit

a similar dependence on the Weissenberg number. In the

limit of vanishing shear, φ is close to the equilibrium value

π/4. Two power-law regimes can be identified for larger Wi,
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FIG. 5. Polyelectrolyte end-to-end vector distribution function (poly-

mer center-of-mass reference frame) in the shear-gradient plane for

(a) lB = 1, Wi = 39.5, (b ) lb = 1, Wi = 1975, (c) lB = 20, Wi = 1.24,

and (d) lB = 20, Wi = 62.
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FIG. 6. Dependence of effective charge ∆α = α − α0, α =
1 − Na/Nm, of PEs on the Weissenberg number Wi for lB =
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a polymer monomer and a condensed counterion is Rc = 2. The in-

set displays the effective charge α0 of PEs at equilibrium as function

of the Bjerrum length. Note that for all Bjerrum lengths the Weis-

senberg number is defined as Wi = γ̇τr.

namely tanφ ∼ Wi−2/3 for Wi . 10 and tanφ ∼ Wi−1/3 for

Wi > 50.

E. Polyelectrolyte Conformations

In order to achieve a molecular understanding of the PE

properties under flow, we classify the PE conformations in

the following groups: stretched or extended state, a partially

folded state, a U-shaped or folded state from both sides, which

can be an open U or a collapsed form, a hair-pin or S-shape,

which again can be of open or collapsed form, and globule and
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correspond to results for the polymer length Nm = 100 at lB = 2.8.

coiled states. Figure 9 displays snapshots of various confor-

mations, which are numbered from 1 to 7. The conformations

are distinguished by two parameters, the average fraction of

overlapping monomers in x-direction, and their average dis-

tance, defined as

No =
Nm

∑
i=1

Rx
i j

∑
j=i+1

Ni j ; Rmm =
1

No

No

∑
k=1

Rx
i j, (10)

where Rx
i j is the distance between monomers along the x-

direction, and will be non-zero only for Ni j = 1 if |Rx
i j| ≤ σ/2.
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V. TUMBLING DYNAMICS

Polymers in shear flow exhibit an intriguing cyclic stretch-

ing and collapse dynamics denoted as tumbling, where the

whole chain performs a rotational motion.2,16,18,36,62,63,77 In

order to determine a characteristic tumbling time for PEs,

their overall rotational motion is quantified with the help of

the magnitude of the end-to-end vector, and the projection of

the end-to-end vector onto the flow direction,

cosθ =
x̂ ·Re

|Re|
, (11)

where x̂ is the unit vector in the flow direction. Figure 12(a)

provides an example for the time dependence of Re and cosθ .

Both quantities show a cyclic, but non-periodic motion. We

define the tumbling time τt as average over many periods,

where θ changes by 2π . The calculated tumbling times are

displayed in Fig. 12(b) for various lB. Evidently, coiled and

globular PEs exhibit a distinctly different tumbling behavior.

Universal behavior is obtained for lB < 3, where τt decrease

with increasing Weissenberg number according to the power-

law τt ∼ Wi−2/3, consistent with the dependence of neutral

polymers.2,18,63 However, for lB & 5 a plateau-type regime

appears for lB = 8, 10, and 15 in the vicinity of Wi = 102.

A plateau may also be present for lB = 20 at higher Weis-

senberg numbers not considered in this study. The difference

in the tumbling dynamics is related to the globular state of the

PE. In the regime Wi . 50, the tumbling time is larger than

the relaxation time τr (τt/τr > 1), i.e., the reorientation of a

globule is slower than the relaxation of the end-to-end vector.

This suggest that tumbling is not governed by the relaxation of

the polymer, but rather by the rotation of the whole globule.

In the plateau regime, τt/τr ≈ 1, strong shear-induced con-

formational changes occur, which lead to large fluctuations of

the magnitude of the end-to-end vector (cf. Fig. 4). Here, tum-

bling and end-to-end vector relaxation are strongly linked, and

the relaxation of the end-to-end vector depends only weakly

on shear. In the asymptotic limit of Wi ≫ 1, even PEs at large

lB show conformations similar to those of neutral systems and

their tumbling times become similar.

We like to stress that hydrodynamic interactions play a role

in the tumbling motion of polyelectrolytes. Already free-

draining polyelectrolytes exhibit deviations in the dependence

of the tumbling time on the Weissenberg number from that of

neutral polymers, however, the plateau for lB ≈ 10 is far less

pronounced for free-draining polyelectrolytes.

VI. SUMMARY

In this article, we have presented results for the con-

formational and dynamical properties of polyelectrolytes in

the presence of explicit counterions under shear flow using

coarse-grained mesoscale hydrodynamics simulations. The

conformations of charged polymers are strongly influenced by

shear similar to those of neutral polymers. However, distinct

differences emerge for strong Coulomb interactions, where

counterions are condensed. In general, counterions display
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t
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FIG. 12. (a) Magnitude of the end-to-end vector, Re, (black) and

the projection of Re, cosθ , (red) onto the flow direction for lB = 1

and Wi = 379. Note that cosθ is multiplied by a factor of 25 for

better visibility. (b) Normalized tumbling time τt as a function of

the Weissenberg number for various Bjerrum lengths as indicated in

the legend. The slope of the power-law line is −2/3. Note that the

Weissenberg number is Wi = γ̇τr.

a similar dynamics as the PEs. However, there distribution is

strongly influenced by shear flow in the limit of weak elec-

trostatic attractions. In contrast, in the regime where they are

condensed, lB ≫ 1, electrostatics dominates over forces ex-

erted by flow, and the counterions closely follow the dynam-

ics of the monomers, remaining always attached to a poly-

mer. Shear-induced polymer alignment suggests two differ-

ent power-law regimes, tanφ ∼ Wi−β , with the exponents

β = 2/3 in the weak flow regime and β = 1/3 for strong flows,

where the weak-flow exponent is different from that of neutral

polymers.

We have identified seven distinct PE conformations under

shear flow. Their respective probabilities suggest that globu-

lar chains (lB > 5) are most often found in closed conforma-

tions of S-shape, U-shape, or in collapsed states. However,

for coiled PEs extended states, and open S- and U-shape con-

formations are dominant.

Strongly charged PEs exhibit a distinct tumbling dynamics.

For lB < 5, tumbling is similar to neutral polymers, with tum-
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bling times decreasing with increasing Weissenberg number

as Wi−2/3. However, for lB > 5, the globular chains exhibit

a plateau-like regime for 50 < Wi < 500. This behavior is

governed by an interplay of attractive interactions mediated

by condensed counterions and external shear flow leading to

extended polymer conformations. Here, the nonequilibrium

polymer conformations are rather different from those of neu-

tral polymers, as is illustrated by the various shapes presented

in Fig. 9.

Our simulation studies reveal a markedly different shear

response of PEs in the presence of counterions compared to

neutral polymers,36,47,63,67 specifically for stronger Coulomb-

interactions, where globular conformations are assumed. Typ-

ically, the Bjerrum lengths of strongly charged synthetic and

biological polymers are in the range lB = 2− 4 under physi-

ological conditions for monovalent counterions4. For exam-

ple, the Bjerrum length of DNA is lB ≈ 0.7nm in water and

the bond length is 0.34nm, which yields a scaled Bjerrum

length of lB/l0 = 2. Hence, such PEs exhibit features simi-

lar to neutral polymers under shear. Larger Bjerrum lengths

are hardly feasible in experiments on DNA or Polystyrene

sulfonate (PSS). It can be varied approximately two fold via

changing the dielectric constant by addition of alcohol, ace-

tone, or ethylene glycol in aqueous solution78. However,

stronger electrostatic interactions, with scaled Bjerrum length

approx. 10 to study particular effects of coil-unfolding under

shear, can be achieved by multivalent monomers and/or coun-

terions. Such kinds of systems have hardly been analyzed so

for, specifically under shear flow. It is important to note that

although the bulk dielectric constant of the fluid is large, it can

be as low as εr ≈ 3−10 in the vicinity of a bond4,79.

The dielectric permittivity near a macromolecule is much

lower than the bulk value. A careful analysis, assuming local

variation of permittivity, reveals significant qualitative change

in the dynamics of polyelectrolytes80. With such variations,

coarse-grained simulations are even able to quantitatively re-

produce results of explicit-solvent atomistic simulation re-

sults. Further studies are required to resolve effects of local

variations in the dielectric constant and the intricate interplay

of polymer structures and explicit counterions80,81, specifi-

cally in the globular limit, where ion-ion correlations are dom-

inant.
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SI-Movie-1: A movie displaying dynamics of a polyelec-

trolyte’s conformations under shear for lB = 2.8 at Weis-

senberg number Wi = 3. SI-Movie-2: A movie displaying dy-

namics of a polyelectrolyte’s conformations under shear for

lB = 2.8 at Weissenberg number Wi = 1470. SI-Movie-3:

A movie displaying dynamics of a globular polyelectrolyte’s

conformations under shear for lB = 10 at Weissenberg num-

ber Wi = 0.2. SI-Movie-4: A movie displaying dynamics

of a globular polyelectrolyte’s conformations under shear for

lB = 10 at Weissenberg number Wi = 104.
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