000878631 001__ 878631
000878631 005__ 20250129092417.0
000878631 037__ $$aFZJ-2020-02962
000878631 041__ $$aEnglish
000878631 1001_ $$0P:(DE-Juel1)169528$$aAckermann, Jörg$$b0$$eCorresponding author
000878631 1112_ $$aFuel Science: From Production to Propulsion 8th International Conference  of the Cluster of Excellence “The Fuel Science Center”$$cAachen$$d2020-06-23 - 2020-06-25$$wGermany
000878631 245__ $$aMagnetic Resonance Techniques to Study Porous Electrodes and Electrode Surfaces
000878631 260__ $$c2020
000878631 3367_ $$033$$2EndNote$$aConference Paper
000878631 3367_ $$2DataCite$$aOther
000878631 3367_ $$2BibTeX$$aINPROCEEDINGS
000878631 3367_ $$2DRIVER$$aconferenceObject
000878631 3367_ $$2ORCID$$aLECTURE_SPEECH
000878631 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1602851612_16786$$xAfter Call
000878631 502__ $$cRWTH Aachen
000878631 520__ $$aNuclear Magnetic Resonance (NMR) is a unique analytical tool to study molecular properties of various materials indestructively. Observable parameters include chemical structure, molecular motion, diffusion and various exchange processes. Moreover, these parameters may be resolved spatially over a region of interest with a resolution up to 50 µm employing Magnetic Resonance Imaging (MRI). Fundamental elements in MR techniques are magnetic fields and radio frequency irradiation.Thus, NMR is an attractive tool to study chemical processes in and at porous electrodes. Such electrodes are employed to convert electrical energy to chemical energy. A detailed understanding of the processes occurring during electrolysis is key to a rational approach in efficiency optimization.However, electrically conductive materials pose additional challenges in NMR:  i) NMR measurements need to be performed at particular frequencies and the resonance mode of the sensor coil must be adjusted accordingly. Introduction of conductive samples in the sensor coil strongly shift its resonance mode and often render commercial probes untunable. Thus, custom probe head designs offering a large tuning range are needed. ii) Radio frequency eddy currents in conductive materials distort the exciting field.iii) The radio frequency response from the sample is distorted in the same way as the exciting field.This talk provides an introduction into NMR on electrically conductive samples. The effect of mode shifts upon sample change and its implications are discussed. Using different model systems, distortions in the exciting radio frequency field are visualized. The strength of these distortions is analyzed with respect to material type and thickness. It is shown that thin metal layers neither significantly perturb qualitative information in NMR spectra, nor relaxometric or diffusometric information. It is shown that radio frequency field distortion can be advantageous as an additional spectroscopic dimension, although most often regarded as a nuisance in literature.
000878631 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000878631 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x1
000878631 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000878631 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x1
000878631 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000878631 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x1
000878631 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x2
000878631 7001_ $$0P:(DE-Juel1)133944$$aStreun, Matthias$$b1$$eContributor
000878631 7001_ $$0P:(DE-Juel1)129503$$aMerz, Steffen$$b2$$eContributor
000878631 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$eHonoree
000878631 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b4
000878631 909CO $$ooai:juser.fz-juelich.de:878631$$pVDB
000878631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169528$$aForschungszentrum Jülich$$b0$$kFZJ
000878631 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)169528$$aRWTH Aachen$$b0$$kRWTH
000878631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich$$b1$$kFZJ
000878631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129503$$aForschungszentrum Jülich$$b2$$kFZJ
000878631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
000878631 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
000878631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b4$$kFZJ
000878631 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b4$$kRWTH
000878631 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000878631 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x1
000878631 9141_ $$y2020
000878631 920__ $$lyes
000878631 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000878631 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x1
000878631 980__ $$aconf
000878631 980__ $$aVDB
000878631 980__ $$aI:(DE-Juel1)IEK-9-20110218
000878631 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000878631 980__ $$aUNRESTRICTED
000878631 981__ $$aI:(DE-Juel1)PGI-4-20110106
000878631 981__ $$aI:(DE-Juel1)IET-1-20110218