001     878631
005     20250129092417.0
037 _ _ |a FZJ-2020-02962
041 _ _ |a English
100 1 _ |a Ackermann, Jörg
|0 P:(DE-Juel1)169528
|b 0
|e Corresponding author
111 2 _ |a Fuel Science: From Production to Propulsion 8th International Conference of the Cluster of Excellence “The Fuel Science Center”
|c Aachen
|d 2020-06-23 - 2020-06-25
|w Germany
245 _ _ |a Magnetic Resonance Techniques to Study Porous Electrodes and Electrode Surfaces
260 _ _ |c 2020
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1602851612_16786
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Nuclear Magnetic Resonance (NMR) is a unique analytical tool to study molecular properties of various materials indestructively. Observable parameters include chemical structure, molecular motion, diffusion and various exchange processes. Moreover, these parameters may be resolved spatially over a region of interest with a resolution up to 50 µm employing Magnetic Resonance Imaging (MRI). Fundamental elements in MR techniques are magnetic fields and radio frequency irradiation.Thus, NMR is an attractive tool to study chemical processes in and at porous electrodes. Such electrodes are employed to convert electrical energy to chemical energy. A detailed understanding of the processes occurring during electrolysis is key to a rational approach in efficiency optimization.However, electrically conductive materials pose additional challenges in NMR: i) NMR measurements need to be performed at particular frequencies and the resonance mode of the sensor coil must be adjusted accordingly. Introduction of conductive samples in the sensor coil strongly shift its resonance mode and often render commercial probes untunable. Thus, custom probe head designs offering a large tuning range are needed. ii) Radio frequency eddy currents in conductive materials distort the exciting field.iii) The radio frequency response from the sample is distorted in the same way as the exciting field.This talk provides an introduction into NMR on electrically conductive samples. The effect of mode shifts upon sample change and its implications are discussed. Using different model systems, distortions in the exciting radio frequency field are visualized. The strength of these distortions is analyzed with respect to material type and thickness. It is shown that thin metal layers neither significantly perturb qualitative information in NMR spectra, nor relaxometric or diffusometric information. It is shown that radio frequency field distortion can be advantageous as an additional spectroscopic dimension, although most often regarded as a nuisance in literature.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 1
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 1
650 1 7 |a Chemical Reactions and Advanced Materials
|0 V:(DE-MLZ)GC-1603-2016
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 1
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 2
700 1 _ |a Streun, Matthias
|0 P:(DE-Juel1)133944
|b 1
|e Contributor
700 1 _ |a Merz, Steffen
|0 P:(DE-Juel1)129503
|b 2
|e Contributor
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 3
|e Honoree
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 4
909 C O |o oai:juser.fz-juelich.de:878631
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169528
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)169528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129503
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)162401
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21