000878633 001__ 878633
000878633 005__ 20210130005708.0
000878633 0247_ $$2doi$$a10.5194/bg-17-1955-2020
000878633 0247_ $$2ISSN$$a1726-4170
000878633 0247_ $$2ISSN$$a1726-4189
000878633 0247_ $$2Handle$$a2128/25557
000878633 0247_ $$2altmetric$$aaltmetric:79739098
000878633 0247_ $$2WOS$$aWOS:000526054000001
000878633 037__ $$aFZJ-2020-02964
000878633 082__ $$a550
000878633 1001_ $$00000-0002-7724-8931$$aVuillemin, Aurèle$$b0$$eCorresponding author
000878633 245__ $$aVivianite formation in ferruginous sediments from Lake Towuti, Indonesia
000878633 260__ $$aKatlenburg-Lindau [u.a.]$$bCopernicus$$c2020
000878633 3367_ $$2DRIVER$$aarticle
000878633 3367_ $$2DataCite$$aOutput Types/Journal article
000878633 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599483088_14754
000878633 3367_ $$2BibTeX$$aARTICLE
000878633 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878633 3367_ $$00$$2EndNote$$aJournal Article
000878633 520__ $$aFerruginous lacustrine systems, such as Lake Towuti, Indonesia, are characterized by a specific type of phosphorus cycling in which hydrous ferric iron (oxyhydr)oxides trap and precipitate phosphorus to the sediment, which reduces its bioavailability in the water column and thereby restricts primary production. The oceans were also ferruginous during the Archean, thus understanding the dynamics of phosphorus in modern-day ferruginous analogues may shed light on the marine biogeochemical cycling that dominated much of Earth's history. Here we report the presence of large crystals (>5 mm) and nodules (>5 cm) of vivianite – a ferrous iron phosphate – in sediment cores from Lake Towuti and address the processes of vivianite formation, phosphorus retention by iron and the related mineral transformations during early diagenesis in ferruginous sediments.Core scan imaging, together with analyses of bulk sediment and pore water geochemistry, document a 30 m long interval consisting of sideritic and non-sideritic clayey beds and diatomaceous oozes containing vivianites. High-resolution imaging of vivianite revealed continuous growth of crystals from tabular to rosette habits that eventually form large (up to 7 cm) vivianite nodules in the sediment. Mineral inclusions like millerite and siderite reflect diagenetic mineral formation antecedent to the one of vivianite that is related to microbial reduction of iron and sulfate. Together with the pore water profiles, these data suggest that the precipitation of millerite, siderite and vivianite in soft ferruginous sediments stems from the progressive consumption of dissolved terminal electron acceptors and the typical evolution of pore water geochemistry during diagenesis. Based on solute concentrations and modeled mineral saturation indices, we inferred vivianite formation to initiate around 20 m depth in the sediment. Negative δ56Fe values of vivianite indicated incorporation of kinetically fractionated light Fe2+ into the crystals, likely derived from active reduction and dissolution of ferric oxides and transient ferrous phases during early diagenesis. The size and growth history of the nodules indicate that, after formation, continued growth of vivianite crystals constitutes a sink for P during burial, resulting in long-term P sequestration in ferruginous sediment.
000878633 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000878633 588__ $$aDataset connected to CrossRef
000878633 7001_ $$0P:(DE-HGF)0$$aFriese, André$$b1
000878633 7001_ $$0P:(DE-HGF)0$$aWirth, Richard$$b2
000878633 7001_ $$0P:(DE-HGF)0$$aSchuessler, Jan A.$$b3
000878633 7001_ $$0P:(DE-HGF)0$$aSchleicher, Anja M.$$b4
000878633 7001_ $$0P:(DE-HGF)0$$aKemnitz, Helga$$b5
000878633 7001_ $$0P:(DE-Juel1)129567$$aLücke, Andreas$$b6
000878633 7001_ $$0P:(DE-HGF)0$$aBauer, Kohen W.$$b7
000878633 7001_ $$0P:(DE-HGF)0$$aNomosatryo, Sulung$$b8
000878633 7001_ $$0P:(DE-HGF)0$$avon Blanckenburg, Friedhelm$$b9
000878633 7001_ $$0P:(DE-HGF)0$$aSimister, Rachel$$b10
000878633 7001_ $$0P:(DE-HGF)0$$aOrdoñez, Luis G.$$b11
000878633 7001_ $$00000-0001-7775-5127$$aAriztegui, Daniel$$b12
000878633 7001_ $$0P:(DE-HGF)0$$aHenny, Cynthia$$b13
000878633 7001_ $$0P:(DE-HGF)0$$aRussell, James M.$$b14
000878633 7001_ $$0P:(DE-HGF)0$$aBijaksana, Satria$$b15
000878633 7001_ $$00000-0002-9902-8120$$aVogel, Hendrik$$b16
000878633 7001_ $$0P:(DE-HGF)0$$aCrowe, Sean A.$$b17
000878633 7001_ $$00000-0002-6440-1140$$aKallmeyer, Jens$$b18
000878633 773__ $$0PERI:(DE-600)2158181-2$$a10.5194/bg-17-1955-2020$$gVol. 17, no. 7, p. 1955 - 1973$$n7$$p1955 - 1973$$tBiogeosciences$$v17$$x1726-4189$$y2020
000878633 8564_ $$uhttps://juser.fz-juelich.de/record/878633/files/bg-17-1955-2020.pdf$$yOpenAccess
000878633 8564_ $$uhttps://juser.fz-juelich.de/record/878633/files/bg-17-1955-2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878633 909CO $$ooai:juser.fz-juelich.de:878633$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000878633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich$$b6$$kFZJ
000878633 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000878633 9141_ $$y2020
000878633 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-15
000878633 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878633 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOGEOSCIENCES : 2018$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878633 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-15
000878633 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-15
000878633 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-15
000878633 920__ $$lyes
000878633 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000878633 980__ $$ajournal
000878633 980__ $$aVDB
000878633 980__ $$aUNRESTRICTED
000878633 980__ $$aI:(DE-Juel1)IBG-3-20101118
000878633 9801_ $$aFullTexts