000878639 001__ 878639
000878639 005__ 20210130005709.0
000878639 0247_ $$2doi$$a10.1021/acs.nanolett.9b02532
000878639 0247_ $$2ISSN$$a1530-6984
000878639 0247_ $$2ISSN$$a1530-6992
000878639 0247_ $$2pmid$$apmid:31361961
000878639 0247_ $$2WOS$$aWOS:000486361900068
000878639 037__ $$aFZJ-2020-02967
000878639 041__ $$aEnglish
000878639 082__ $$a660
000878639 1001_ $$0P:(DE-HGF)0$$aWang, Chaoqi$$b0
000878639 245__ $$aEtching-Assisted Route to Heterophase Au Nanowires with Multiple Types of Active Surface Sites for Silane Oxidation
000878639 260__ $$aWashington, DC$$bACS Publ.$$c2019
000878639 3367_ $$2DRIVER$$aarticle
000878639 3367_ $$2DataCite$$aOutput Types/Journal article
000878639 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599461453_14836
000878639 3367_ $$2BibTeX$$aARTICLE
000878639 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878639 3367_ $$00$$2EndNote$$aJournal Article
000878639 520__ $$aThe construction of multiple types of active sites on the surface of a metallic catalyst can markedly enhance its catalytic activity toward specific reactions. Here, we show that heterophase gold nanowires (Au NWs) with multiple types of active surface sites can be synthesized using an etching-assisted process, yielding the highest reported turnover frequency (TOF) for Au catalysts toward the silane oxidation reaction by far. We use synchrotron powder X-ray diffraction (PXRD) and aberration-corrected (scanning) transmission electron microscopy (TEM) to show that the Au NWs contain heterophase structures, planar defects, and surface steps. Moreover, the contribution to the catalytic performance from each type of active sites was clarified. Surface steps on the Au NW catalysts, which were identified using aberration-corrected (scanning) TEM, were shown to play the most important role in enhancing the catalytic performance. By using synchrotron PXRD, it was shown that a small ratio of metastable phases within Au NWs can enhance catalytic activity by a factor of 1.35, providing a further route to improve catalytic activity. Of the three types of surface active sites, surface terminations of planar defects such as twin boundaries (TB) and stacking faults (SF) are less active than metastable phases and surface steps for Au catalysts toward the silane oxidation reaction. Such an etching-assisted synthesis of heterophase Au NWs promises to open new possibilities for catalysis, plasmonic, optics, and electrical applications.
000878639 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878639 588__ $$aDataset connected to CrossRef
000878639 7001_ $$0P:(DE-HGF)0$$aLi, Xiang$$b1
000878639 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b2
000878639 7001_ $$0P:(DE-Juel1)167381$$aLu, Peng-Han$$b3$$ufzj
000878639 7001_ $$0P:(DE-HGF)0$$aDejoie, Catherine$$b4
000878639 7001_ $$0P:(DE-HGF)0$$aZhu, Wenxin$$b5
000878639 7001_ $$0P:(DE-HGF)0$$aWang, Zhenni$$b6
000878639 7001_ $$0P:(DE-Juel1)171234$$aBi, Wei$$b7$$ufzj
000878639 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b8$$ufzj
000878639 7001_ $$0P:(DE-HGF)0$$aChen, Kai$$b9$$eCorresponding author
000878639 7001_ $$00000-0001-9708-1959$$aJin, Mingshang$$b10$$eCorresponding author
000878639 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.9b02532$$gVol. 19, no. 9, p. 6363 - 6369$$n9$$p6363 - 6369$$tNano letters$$v19$$x1530-6992$$y2019
000878639 8564_ $$uhttps://juser.fz-juelich.de/record/878639/files/acs.nanolett.9b02532.pdf
000878639 8564_ $$uhttps://juser.fz-juelich.de/record/878639/files/acs.nanolett.9b02532.pdf?subformat=pdfa$$xpdfa
000878639 909CO $$ooai:juser.fz-juelich.de:878639$$pVDB
000878639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b2$$kFZJ
000878639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167381$$aForschungszentrum Jülich$$b3$$kFZJ
000878639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171234$$aForschungszentrum Jülich$$b7$$kFZJ
000878639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b8$$kFZJ
000878639 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878639 9141_ $$y2020
000878639 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2018$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-06
000878639 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2018$$d2020-01-06
000878639 920__ $$lyes
000878639 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878639 980__ $$ajournal
000878639 980__ $$aVDB
000878639 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878639 980__ $$aUNRESTRICTED