001     878639
005     20210130005709.0
024 7 _ |a 10.1021/acs.nanolett.9b02532
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a pmid:31361961
|2 pmid
024 7 _ |a WOS:000486361900068
|2 WOS
037 _ _ |a FZJ-2020-02967
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Wang, Chaoqi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Etching-Assisted Route to Heterophase Au Nanowires with Multiple Types of Active Surface Sites for Silane Oxidation
260 _ _ |a Washington, DC
|c 2019
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599461453_14836
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The construction of multiple types of active sites on the surface of a metallic catalyst can markedly enhance its catalytic activity toward specific reactions. Here, we show that heterophase gold nanowires (Au NWs) with multiple types of active surface sites can be synthesized using an etching-assisted process, yielding the highest reported turnover frequency (TOF) for Au catalysts toward the silane oxidation reaction by far. We use synchrotron powder X-ray diffraction (PXRD) and aberration-corrected (scanning) transmission electron microscopy (TEM) to show that the Au NWs contain heterophase structures, planar defects, and surface steps. Moreover, the contribution to the catalytic performance from each type of active sites was clarified. Surface steps on the Au NW catalysts, which were identified using aberration-corrected (scanning) TEM, were shown to play the most important role in enhancing the catalytic performance. By using synchrotron PXRD, it was shown that a small ratio of metastable phases within Au NWs can enhance catalytic activity by a factor of 1.35, providing a further route to improve catalytic activity. Of the three types of surface active sites, surface terminations of planar defects such as twin boundaries (TB) and stacking faults (SF) are less active than metastable phases and surface steps for Au catalysts toward the silane oxidation reaction. Such an etching-assisted synthesis of heterophase Au NWs promises to open new possibilities for catalysis, plasmonic, optics, and electrical applications.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Li, Xiang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 2
700 1 _ |a Lu, Peng-Han
|0 P:(DE-Juel1)167381
|b 3
|u fzj
700 1 _ |a Dejoie, Catherine
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhu, Wenxin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Zhenni
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bi, Wei
|0 P:(DE-Juel1)171234
|b 7
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 8
|u fzj
700 1 _ |a Chen, Kai
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
700 1 _ |a Jin, Mingshang
|0 0000-0001-9708-1959
|b 10
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.9b02532
|g Vol. 19, no. 9, p. 6363 - 6369
|0 PERI:(DE-600)2048866-X
|n 9
|p 6363 - 6369
|t Nano letters
|v 19
|y 2019
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/878639/files/acs.nanolett.9b02532.pdf
856 4 _ |u https://juser.fz-juelich.de/record/878639/files/acs.nanolett.9b02532.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:878639
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)167381
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21