000878654 001__ 878654
000878654 005__ 20210130005713.0
000878654 0247_ $$2doi$$a10.1016/j.ultramic.2019.02.016
000878654 0247_ $$2ISSN$$a0304-3991
000878654 0247_ $$2ISSN$$a1879-2723
000878654 0247_ $$2pmid$$apmid:30862364
000878654 0247_ $$2WOS$$aWOS:000465021000005
000878654 037__ $$aFZJ-2020-02975
000878654 041__ $$aEnglish
000878654 082__ $$a570
000878654 1001_ $$0P:(DE-HGF)0$$aChen, Xinfeng$$b0
000878654 245__ $$aNanoscale measurement of giant saturation magnetization in α″-Fe16N2 by electron energy-loss magnetic chiral dichroism
000878654 260__ $$aAmsterdam$$bElsevier Science$$c2019
000878654 3367_ $$2DRIVER$$aarticle
000878654 3367_ $$2DataCite$$aOutput Types/Journal article
000878654 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599461961_14836
000878654 3367_ $$2BibTeX$$aARTICLE
000878654 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878654 3367_ $$00$$2EndNote$$aJournal Article
000878654 520__ $$aMetastable α″-Fe16N2 thin films were reported to have a giant saturation magnetization of above 2200 emu/cm3 in 1972 and have been considered as candidates for next-generation rare-earth-free permanent magnetic materials. However, their magnetic properties have not been confirmed unequivocally. As a result of the limited spatial resolution of most magnetic characterization techniques, it is challenging to measure the saturation magnetization of the α″-Fe16N2 phase, as it is often mixed with the parent α′-Fe8N phase in thin films. Here, we use electron energy-loss magnetic chiral dichroism (EMCD), aberration-corrected transmission electron microscopy, X-ray diffraction and macroscopic magnetic measurements to study α″-Fe16N2 (containing ordered N atoms) and α′-Fe8N (containing disordered N atoms). The ratio of saturation magnetization in α″-Fe16N2 to that in α′-Fe8N is determined to be 1.31 ± 0.10 from quantitative EMCD measurements and dynamical diffraction calculations, confirming the giant saturation magnetization of α″-Fe16N2. Crystallographic information is also obtained about the two phases, which are mixed on the nanoscale.
000878654 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878654 536__ $$0G:(EU-Grant)320832$$aIMAGINE - Imaging Magnetism in Nanostructures using Electron Holography (320832)$$c320832$$fERC-2012-ADG_20120216$$x1
000878654 588__ $$aDataset connected to CrossRef
000878654 7001_ $$0P:(DE-HGF)0$$aHigashikozono, Soma$$b1
000878654 7001_ $$00000-0002-3682-8614$$aIto, Keita$$b2
000878654 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b3$$ufzj
000878654 7001_ $$0P:(DE-HGF)0$$aHo, Ping-Luen$$b4
000878654 7001_ $$0P:(DE-HGF)0$$aYu, Chu-Ping$$b5
000878654 7001_ $$0P:(DE-HGF)0$$aTai, Nyan-Hwa$$b6
000878654 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b7
000878654 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b8
000878654 7001_ $$0P:(DE-HGF)0$$aSuemasu, Takashi$$b9
000878654 7001_ $$0P:(DE-HGF)0$$aZhong, Xiaoyan$$b10$$eCorresponding author
000878654 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2019.02.016$$gVol. 203, p. 37 - 43$$p37 - 43$$tUltramicroscopy$$v203$$x0304-3991$$y2019
000878654 909CO $$ooai:juser.fz-juelich.de:878654$$pec_fundedresources$$pVDB$$popenaire
000878654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b3$$kFZJ
000878654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b7$$kFZJ
000878654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b8$$kFZJ
000878654 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878654 9141_ $$y2020
000878654 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-17$$wger
000878654 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2018$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-17
000878654 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000878654 920__ $$lyes
000878654 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878654 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000878654 980__ $$ajournal
000878654 980__ $$aVDB
000878654 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878654 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000878654 980__ $$aUNRESTRICTED