001 | 878655 | ||
005 | 20240712113231.0 | ||
024 | 7 | _ | |a 10.1002/ppsc.201800442 |2 doi |
024 | 7 | _ | |a 0934-0866 |2 ISSN |
024 | 7 | _ | |a 1521-4117 |2 ISSN |
024 | 7 | _ | |a 1522-936X |2 ISSN |
024 | 7 | _ | |a WOS:000461878400005 |2 WOS |
037 | _ | _ | |a FZJ-2020-02976 |
041 | _ | _ | |a English |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Shviro, Meital |0 P:(DE-Juel1)165174 |b 0 |e Corresponding author |
245 | _ | _ | |a Morphological, Structural, and Compositional Evolution of Pt–Ni Octahedral Electrocatalysts with Pt‐Rich Edges and Ni‐Rich Core: Toward the Rational Design of Electrocatalysts for the Oxygen Reduction Reaction |
260 | _ | _ | |a Weinheim |c 2019 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1670570979_28873 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The progress in colloidal synthesis of Pt–Ni octahedra has been instrumental in rising the oxygen reduction reaction catalytic activity high above the benchmark of Pt catalysts. This impressive catalytic performance is believed to result from the exposure of the most active catalytic sites after an activation process, chemical or electrochemical, which leads to a Pt surface enrichment. A foremost importance is to understand the structure and the elemental distribution of Pt–Ni octahedral, which leads to an optimal catalytic activity and stability. However, the factors governing the synthesis of the Pt–Ni octahedra are not well understood. In this study, unprecedented surface atomic segregation of Pt atoms in a Ni‐rich Pt–Ni octahedral nanoparticle structure is established by advanced electron microscopy. The Pt atoms are almost exclusively located on the edges of the Pt–Ni octahedra. This structure is formed in a pristine form, i.e., prior to any chemical or electrochemical etching. A new growth mechanism is revealed, which involves the transformation from an octahedron with a Pt‐rich core to a Ni‐rich octahedron with Pt‐rich edges. This observation may pave the way for a deeper understanding of this class of Pt–Ni octahedral nanoparticles as an electrocatalyst. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |x 0 |f POF III |
536 | _ | _ | |a ESTEEM 2 - Enabling Science and Technology through European Electron Microscopy (312483) |0 G:(EU-Grant)312483 |c 312483 |x 1 |f FP7-INFRASTRUCTURES-2012-1-RTD |
536 | _ | _ | |a DFG project 257727131 - Nanoskalige Pt Legierungselektrokatalysatoren mit definierter Morphologie: Synthese, Electrochemische Analyse, und ex-situ/in-situ Transmissionselektronenmikroskopische (TEM) Studien (257727131) |0 G:(GEPRIS)257727131 |c 257727131 |x 2 |
536 | _ | _ | |a 1231 - Electrochemistry for Hydrogen (POF4-123) |0 G:(DE-HGF)POF4-1231 |c POF4-123 |x 3 |f POF IV |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Gocyla, Martin |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Polani, Shlomi |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 3 |
700 | 1 | _ | |a Zitoun, David |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Dunin‐Borkowski, Rafal E. |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |a 10.1002/ppsc.201800442 |g Vol. 36, no. 3, p. 1800442 - |0 PERI:(DE-600)1481071-2 |n 3 |p 1800442 - |t Particle & particle systems characterization |v 36 |y 2019 |x 0176-2265 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878655/files/ppsc.201800442.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878655/files/ppsc.201800442.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:878655 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165174 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Configuration-Based Phenomena |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1231 |x 1 |
913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-23 |w ger |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-02-23 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PART PART SYST CHAR : 2019 |d 2021-02-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-23 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-02-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-23 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-23 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-23 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-14-20191129 |k IEK-14 |l Elektrochemische Verfahrenstechnik |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a I:(DE-Juel1)IEK-14-20191129 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|