000878657 001__ 878657
000878657 005__ 20210130005714.0
000878657 0247_ $$2doi$$a10.1007/s10853-018-3096-4
000878657 0247_ $$2ISSN$$a0022-2461
000878657 0247_ $$2ISSN$$a1573-4803
000878657 0247_ $$2WOS$$aWOS:000452712800002
000878657 037__ $$aFZJ-2020-02978
000878657 082__ $$a670
000878657 1001_ $$00000-0002-1534-5955$$aSternlicht, Hadas$$b0
000878657 245__ $$aCharacterization of grain boundary disconnections in SrTiO3 part I: the dislocation component of grain boundary disconnections
000878657 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2019
000878657 3367_ $$2DRIVER$$aarticle
000878657 3367_ $$2DataCite$$aOutput Types/Journal article
000878657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599546257_32472
000878657 3367_ $$2BibTeX$$aARTICLE
000878657 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878657 3367_ $$00$$2EndNote$$aJournal Article
000878657 520__ $$aHigh-resolution transmission electron microscopy is often used to characterize grain boundaries, but it is usually limited to special high symmetry boundaries with a high density of coincident sites. For these ‘special’ boundaries, both crystals can be brought into a low-index zone-axis with the boundary plane parallel to the incident electron beam. In this case the atomistic structure of the boundary can be solved, which is not possible for other, more general grain boundaries. In the present study, general grain boundaries in SrTiO3 were analyzed using aberration-corrected transmission electron microscopy and scanning transmission electron microscopy. These boundaries included at least one type of disconnection (i.e., defects that can have a step and/or a dislocation component). Since the dislocation component of disconnections along general grain boundaries cannot be fully resolved using the methods currently available, a plane matching approach was used to compare disconnections at different boundaries. Using this approach, the dislocation component of the disconnections was partially characterized and was found to have an edge component mainly parallel to {100} and {110}, close to normal to the macroscopic grain boundary plane. The step component of the disconnections was found to be aligned mainly parallel to the same crystallographic planes ({100} and {110}).
000878657 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878657 588__ $$aDataset connected to CrossRef
000878657 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b1$$ufzj
000878657 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b2
000878657 7001_ $$00000-0002-2464-1588$$aHoffmann, Michael J.$$b3
000878657 7001_ $$00000-0001-9202-391X$$aKaplan, Wayne D.$$b4$$eCorresponding author
000878657 773__ $$0PERI:(DE-600)2015305-3$$a10.1007/s10853-018-3096-4$$gVol. 54, no. 5, p. 3694 - 3709$$n5$$p3694 - 3709$$tJournal of materials science$$v54$$x1573-4803$$y2019
000878657 8564_ $$uhttps://juser.fz-juelich.de/record/878657/files/Sternlicht2019_Article_CharacterizationOfGrainBoundar.pdf
000878657 909CO $$ooai:juser.fz-juelich.de:878657$$pVDB
000878657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b1$$kFZJ
000878657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b2$$kFZJ
000878657 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878657 9141_ $$y2020
000878657 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-16$$wger
000878657 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-01-16$$wger
000878657 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER SCI : 2018$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000878657 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000878657 920__ $$lyes
000878657 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878657 980__ $$ajournal
000878657 980__ $$aVDB
000878657 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878657 980__ $$aUNRESTRICTED