000878659 001__ 878659
000878659 005__ 20230310131401.0
000878659 0247_ $$2doi$$a10.1016/j.ultramic.2019.112877
000878659 0247_ $$2ISSN$$a0304-3991
000878659 0247_ $$2ISSN$$a1879-2723
000878659 0247_ $$2Handle$$a2128/26045
000878659 0247_ $$2pmid$$apmid:31884381
000878659 0247_ $$2WOS$$aWOS:000510861500005
000878659 037__ $$aFZJ-2020-02980
000878659 041__ $$aEnglish
000878659 082__ $$a570
000878659 1001_ $$0P:(DE-HGF)0$$aMevenkamp, Niklas$$b0
000878659 245__ $$aMulti-modal and multi-scale non-local means method to analyze spectroscopic datasets
000878659 260__ $$aAmsterdam$$bElsevier Science$$c2020
000878659 3367_ $$2DRIVER$$aarticle
000878659 3367_ $$2DataCite$$aOutput Types/Journal article
000878659 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604503306_19106
000878659 3367_ $$2BibTeX$$aARTICLE
000878659 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878659 3367_ $$00$$2EndNote$$aJournal Article
000878659 520__ $$aA multi-modal and multi-scale non-local means (M3S-NLM) method is proposed to extract atomically resolved spectroscopic maps from low signal-to-noise (SNR) datasets recorded with a transmission electron microscope. This method improves upon previously tested denoising techniques as it takes into account the correlation between the dark-field signal recorded simultaneously with the spectroscopic dataset without compromising on the spatial resolution. The M3S-NLM method was applied to electron energy dispersive X-ray and electron-energy-loss spectroscopy (EELS) datasets. We illustrate the retrieval of the atomic scale diffusion process in an Al1-xInxN alloy grown on GaN and the surface oxidation state of perovskite nanocatalysts. The improved SNR of the EELS dataset also allows the retrieval of atomically resolved oxidation maps considering the fine structure absorption edge of LaMnO3 nanoparticles.
000878659 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878659 536__ $$0G:(GEPRIS)257727131$$aDFG project 257727131 - Nanoskalige Pt Legierungselektrokatalysatoren mit definierter Morphologie: Synthese, Electrochemische Analyse, und ex-situ/in-situ Transmissionselektronenmikroskopische (TEM) Studien (257727131)$$c257727131$$x1
000878659 588__ $$aDataset connected to CrossRef
000878659 7001_ $$0P:(DE-Juel1)168372$$aMacArthur, Katherine E.$$b1$$ufzj
000878659 7001_ $$0P:(DE-HGF)0$$aTileli, Vasiliki$$b2
000878659 7001_ $$0P:(DE-Juel1)130627$$aEbert, Philipp$$b3$$ufzj
000878659 7001_ $$0P:(DE-Juel1)172835$$aAllen, Leslie J.$$b4
000878659 7001_ $$0P:(DE-HGF)0$$aBerkels, Benjamin$$b5
000878659 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b6$$eCorresponding author
000878659 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2019.112877$$gVol. 209, p. 112877 -$$p112877 -$$tUltramicroscopy$$v209$$x0304-3991$$y2020
000878659 8564_ $$uhttps://juser.fz-juelich.de/record/878659/files/Denoising_review2_v1.pdf$$yPublished on 2019-10-30. Available in OpenAccess from 2021-10-30.
000878659 8564_ $$uhttps://juser.fz-juelich.de/record/878659/files/Denoising_review2_v1.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-10-30. Available in OpenAccess from 2021-10-30.
000878659 909CO $$ooai:juser.fz-juelich.de:878659$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878659 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168372$$aForschungszentrum Jülich$$b1$$kFZJ
000878659 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b3$$kFZJ
000878659 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878659 9141_ $$y2020
000878659 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000878659 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878659 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878659 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2018$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878659 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-17$$wger
000878659 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878659 920__ $$lyes
000878659 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878659 980__ $$ajournal
000878659 980__ $$aVDB
000878659 980__ $$aUNRESTRICTED
000878659 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878659 9801_ $$aFullTexts