001     878659
005     20230310131401.0
024 7 _ |a 10.1016/j.ultramic.2019.112877
|2 doi
024 7 _ |a 0304-3991
|2 ISSN
024 7 _ |a 1879-2723
|2 ISSN
024 7 _ |a 2128/26045
|2 Handle
024 7 _ |a pmid:31884381
|2 pmid
024 7 _ |a WOS:000510861500005
|2 WOS
037 _ _ |a FZJ-2020-02980
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Mevenkamp, Niklas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Multi-modal and multi-scale non-local means method to analyze spectroscopic datasets
260 _ _ |a Amsterdam
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604503306_19106
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A multi-modal and multi-scale non-local means (M3S-NLM) method is proposed to extract atomically resolved spectroscopic maps from low signal-to-noise (SNR) datasets recorded with a transmission electron microscope. This method improves upon previously tested denoising techniques as it takes into account the correlation between the dark-field signal recorded simultaneously with the spectroscopic dataset without compromising on the spatial resolution. The M3S-NLM method was applied to electron energy dispersive X-ray and electron-energy-loss spectroscopy (EELS) datasets. We illustrate the retrieval of the atomic scale diffusion process in an Al1-xInxN alloy grown on GaN and the surface oxidation state of perovskite nanocatalysts. The improved SNR of the EELS dataset also allows the retrieval of atomically resolved oxidation maps considering the fine structure absorption edge of LaMnO3 nanoparticles.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 0
|f POF III
536 _ _ |a DFG project 257727131 - Nanoskalige Pt Legierungselektrokatalysatoren mit definierter Morphologie: Synthese, Electrochemische Analyse, und ex-situ/in-situ Transmissionselektronenmikroskopische (TEM) Studien (257727131)
|0 G:(GEPRIS)257727131
|c 257727131
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a MacArthur, Katherine E.
|0 P:(DE-Juel1)168372
|b 1
|u fzj
700 1 _ |a Tileli, Vasiliki
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ebert, Philipp
|0 P:(DE-Juel1)130627
|b 3
|u fzj
700 1 _ |a Allen, Leslie J.
|0 P:(DE-Juel1)172835
|b 4
700 1 _ |a Berkels, Benjamin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Duchamp, Martial
|0 P:(DE-Juel1)145413
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.ultramic.2019.112877
|g Vol. 209, p. 112877 -
|0 PERI:(DE-600)1479043-9
|p 112877 -
|t Ultramicroscopy
|v 209
|y 2020
|x 0304-3991
856 4 _ |y Published on 2019-10-30. Available in OpenAccess from 2021-10-30.
|u https://juser.fz-juelich.de/record/878659/files/Denoising_review2_v1.pdf
856 4 _ |y Published on 2019-10-30. Available in OpenAccess from 2021-10-30.
|x pdfa
|u https://juser.fz-juelich.de/record/878659/files/Denoising_review2_v1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878659
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168372
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130627
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-17
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ULTRAMICROSCOPY : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21