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Abstract

A multi-modal  and  multi-scale  non-local  means  (M3S-NLM)  method  is  proposed  to  extract  atomically  resolved

spectroscopic maps from low signal-to-noise (SNR) datasets recorded with a transmission electron microscope. This

method improves upon previously tested denoising techniques as it takes into account the correlation between the dark-

field signal recorded simultaneously with the spectroscopic dataset without compromising on the spatial resolution. The

M3S-NLM method was applied to electron energy dispersive X-ray and electron-energy-loss spectroscopy (EELS)

datasets. We illustrate the retrieval of the atomic scale diffusion process in an Al1-xInxN alloy grown on GaN and the

surface oxidation state of perovskite nanocatalysts. The improved SNR of the EELS dataset also allows the retrieval of

atomically resolved oxidation maps considering the fine structure absorption edge of LaMnO3 nanoparticles. 

1. Introduction

In the last decade, aberration correction in transmission electron microscopes has led to atomic resolution electron

energy-loss  spectroscopy  (EELS)  and  energy-dispersive  X-ray  (EDX)  mapping.  In  EELS  atomically-resolved

compositional1 and  valence  mapping2 as  well  as  spectroscopic  analysis  at  the  single  atom  level3 have  been

demonstrated. Atomic resolution EDX mapping was first demonstrated in 20104 and recently put on an absolute scale5.

The low inelastic scattering cross-section of high-energy electrons with core electron atomic levels implies, however,

that only a small fraction of the incoming electron beam current contributes to analytical signals inside a transmission

electron microscope.  The application of atomically resolved spectroscopic transmission electron microscopy (TEM)

techniques to specimens that  are electron-beam sensitive or  change as  a  function of  exposure time,  especially for

applications in the life sciences and for studies of soft matter, is still to be demonstrated. 

Post-processing techniques based on multivariate statistical analysis (MVA) are used to improve the signal-to-noise

ratio (SNR) of spectroscopic datasets by taking advantage of redundancy in the information. Starting with principal

component  analysis6,7 in  the  late  90's,  followed by  more  advanced  decomposition  techniques  such  as  independent

component analysis8, non-negative matrix factorization9-11 or geometric-based extraction methods like vertex component

analysis12-14 have greatly improved the exploitability of the spectroscopic data. However, Lichtert and Verbeeck have

shown MVA-based techniques can introduce a significant bias,  which may alter the conclusions drawn from noisy

experimental data sets15.  On the other hand, non-local denoising algorithms16 such as non-local means17,  the block-

matching and a 3D filtering algorithm18, consider the entire image for averaging and select the set of pixels associated

with a reference pixel based on the similarity of the image content within neighborhoods around the respective pixels

(instead of their spatial vicinity). Given that objects of interest within the image actually occur multiple times, this

approach has proven to offer a faithful reconstruction while sacrificing much less spatial resolution than with local
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averaging, or none at all19. In particular, previous studies indicate that the non-local denoising approach enables a high

quality  reconstruction of  low dose  high-resolution  scanning  (S-)TEM images  or  EELS scans20-22. EELS and EDX

datasets are commonly recorded simultaneously with an imaging STEM signal with a higher SNR. The temporal and

spatial  correlation  between the  imaging  and  analytical  signals  makes  some information  redundant.  Estimating  the

genuine image intensity or spectrum contrast at a given reference pixel is typically done by averaging over a set of

somehow associated values, e.g., over a local window centered around the reference pixel. Thereby, image details that

are smaller than the window size are blurred, resulting in a loss of spatial resolution. Here, we present a denoising

technique,  namely  the  multi-modal  and  multi-scale  non-local  means  (M3S-NLM) method.  It  combines  the  image

information of jointly acquired scans of possibly different modalities (e.g. high-angle annular-dark-field (HAADF)-

STEM and EELS or EDX signals) in order to select sets of associated pixels for averaging. In the rest of the manuscript,

STEM, EELS and EDX refer to HAADF-STEM, EELS-STEM and EDX-STEM unless otherwise stated.

2. Materials and methods

2.1 Multi-modal and multi-scale non-local means method

2.1.1 Non-local means method

A widely used technique for noise reduction is mean filtering. For a given window size (2s+1 by 2s+1) with a positive 

integer s, each pixel is replaced with the average of all pixels in the window:

I MEAN (x , y)=
1

(2 s+1)
2 ∑

Δ x=−s

s

∑
Δ y=−s

s

I (x+Δ x , y+Δ y ) eq. 1

where I ( x , y) is the pixel intensity at coordinate (x , y ) .

The disadvantage of such a basic denoising approach is that it smears out fine details and thereby reduces the spatial

resolution of the reconstructed images on the scale of the window size. Modern denoising methods try to address this

problem by utilizing the structure of the given images. For instance, the NLM incorporates weights in the above average

that measure how similar the structure surrounding the respective pixels is (within a given structure window of size

(2s+1 by 2s+1)). The decision on the structure window size is balanced between robustness to noise and preserving fine

features (the larger it is, the more robust to noise it becomes, but at the same time it becomes more unlikely to find a

larger block which actually has the same structure). The search for similarities is performed over a so-called search

window of size (2Wx +1 by 2Wy+1), ideally the full image.  The intensity of the NLM denoised image is computed as:

I NLM (x , y )=

∑
Δ wx=−W x

Wx

∑
Δ wy=−W y

W y

I (x+Δ w x , y+Δw y)w (I ,(x , y ),(x+Δw x , y+Δ w y))

∑
Δw x=−W x

W x

∑
Δw y=−W y

W y

w (I ,(x , y ),(x+Δ wx , y+Δ w y))

eq. 2

with weights

w (I ,(x , y) ,( x̂ , ŷ ))=exp [−d ( I ,(x , y ), ( x̂ , ŷ ))

h2 ] eq. 3

that represent the structure window similarity, which is defined by the structure window distance (eq. 4).

d( I ,(x , y) ,( x̂ , ŷ))= ∑
Δx=−s

s

∑
Δ y=− s

s

(I (x+Δ x , y+Δ y )−I ( x̂+Δ x , ŷ+Δ y ))
2

eq. 4
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The filter parameter h is used to tweak the amount of denoising applied to the image, i.e. larger h will result in

stronger denoising and for h→0 less noise will be removed. h  is connected to the noise standard deviation (σ)

of the image.  If  known,  h=√2σ is  a  good choice for the filter  parameter.  In this study, STEM images were

transformed  using  the generalized  Anscombe  transformation  and  EDX  datasets  using  the  classical  Anscombe

transformation as the latter mainly contained Poisson noise. In such a case, we have σ=1 and h=√2 . In eq. 2,

the size of the search window is defined by (W x ,W y) . Ideally, for each reference pixel (x , y ) the entire image

is searched for similar features and used to estimate the average pixel intensity I NLM (x , y ) . However, in practice,

this is typically too computationally intensive, since the effort then grows as the square of the number of pixels in

contrast to mean filtering, which requires only linear effort in the number of pixels. Thus, (W x ,W y) are typically

restricted to a reasonably sized search window. The similarity of two blocks (defined by the structure window) is

represented by the values of the structure window distance,  d . A low value of  d means the block centered at

(x , y ) is  similar  to  the  block  centered at (x+Δw x , y+Δw y) ,  a  large value  of  d means they are  not

similar. This reflects in the values of the weights (w), low d  means w→1 , large d  means w→0 . It

turns out the double sum over the search window in the numerator of the eq. 2 will  add pixels that  have similar

neighbors. The whole NLM procedure is repeated by shifting the reference block pixel by pixel and line by line across

the entire scanned area resulting in a less noisy new image.

2.1.2 Multi-modal and multi-scale non-local means (M3S-NLM)

In the case of STEM images,  non-local averaging algorithms have been found particularly suited to find sufficient

similar features for averaging.  Recently, a refined version of the NLM algorithm, namely the block matching and 3d

filtering (BM3D) algorithm18, 23 that is similar to the NLM algorithm, has been found to outperform the NLM algorithm

for STEM images20. Therefore, the STEM images were reconstructed using the BM3D algorithm and the EDX/EELS

datasets using the NLM algorithm.  In the following, we describe how the NLM principle can be extended to multi-

modal image acquisition, in particular  in  the context of  STEM and EDX/EELS parallel  imaging.  A more detailed

description is given in Ref. 24. For the STEM modality ( I STEM ),   the  structure window distance is defined as

follows:

d STEM( I , u⃗ , v⃗)=d( I STEM , u⃗ , v⃗ ) eq. 5

where u⃗=(x , y) and v⃗=( x̂ , ŷ ) . We will keep the vectorial notation in the rest of the manuscript.

For the EDX modality, we observed that the SNR is so low that a comparison of individual spectra at different positions

would be meaningless. Thus, we need to define a structure window similarity that is more robust to extremely low

SNRs. To this end, we propose to first down-sample the spectral channels and then to compare the two STEM and EDX

structure windows. Thus, let I EDX denote an EDX image intensity with nc the number of spectral channels. Let

Î EDX denote a resampled version of I EDX where each rc consecutive channels have been averaged together

and c  being the channel of interest, i.e.,

Î EDX(u⃗ ,c )=
1
rc
∑
k=1

r c

I EDX (u⃗ ,(c−1)rc+k ) eq. 6
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Thus, Î EDX now has nc
r
=

nr

r c

<nc channels.

To further increase the SNR of the EDX dataset and prior applying the M3S-NLM procedure, we define the spatially

averaged structure window distance for the EDX modality ( dEDX ), as the sum over the binned energy channels of

the squared difference of the intensities averaged over a given window (2s+1 by 2s+1 pixels) between a set of two

pixels (u⃗ , v⃗) and given by:

dEDX (u⃗ , v⃗ )=∑
c=1

nc
r

( Î EDX
MEAN

(u⃗ , c )− Î EDX
MEAN

( v⃗ ,c ))
2

eq. 7

where:

Î EDX
MEAN

(u⃗ , c)= 1

(2 s+1)
2 ∑

Δ s⃗∈N

Î EDX (u⃗+Δ s⃗ , c) eq. 8

and where Δ s⃗=(Δ x ,Δ y )  and N being the structure window of size (2s+1 by 2s+1) centered at (0,0) used

instead of the double sum eq. 4.  dEDX(u⃗ , v⃗ ) is a measure on how similar the EDX spectra at positions u⃗ and

v⃗ are. Now, for sufficiently large windows sizes, the similarity measure for EDX structure windows is meaningful

even for extremely low SNRs. However, it is also much less sensitive to spatial variations due to the spatial average

performed via eq. 8. To alleviate this issue, we combine the advantages of high spatial resolution and fidelity encoded in

the STEM structure window distances, d STEM , with the spectral resolution of the EDX structure window distances,

dEDX . Due to the different modalities, these two structure window distances have completely different scales. To

account for this, we normalize them with the reference structure window values:

d STEM
ref

(u⃗)= ∑
Δ w⃗∈M

( I STEM(u⃗+Δ w⃗))
2

eq. 9

dEDX
ref

(u⃗)=∑
c=1

nc
r

( Î EDX
MEAN

(u⃗+Δ w⃗ , c ))
2

eq. 10

where Δ w⃗=(Δw x , Δw y)  and M being the search window of size (2Wx +1 by 2Wy+1).

Then, we define the joint similarity as the normalized sum of the similarities of all modalities, in our case the STEM

image with EELS/EDX dataset. The combined multi-scale and multi-modal structure window distance is then defined

as the following weighted normalized convex combination of the two individual structure window distances:

d M 3 S−NLM (u⃗ , v⃗ )=c1

dSTEM (u⃗ , v⃗)

dSTEM
ref

(u⃗)
+c2

dEDX (u⃗ , v⃗ )

dEDX
ref

(u⃗ )
eq. 11

Here, c1, c2  in the range [0,1] with c1+c2=1  are weights that can be used to trade-off the importance of

the STEM and EDX modalities for block similarity recognition against each other. Unless one wants to put emphasis on

one of the two modalities, the values  c1=c2=0.5 can be chosen.  Only if this sum is small enough, i.e. if the

neighborhoods of the two pixels are similar with respect to each modality, the new pixel is considered for averaging.

This allows the algorithm to differentiate between atomic columns with the same STEM signal but different EELS/EDX

spectra. Note d STEM(u⃗ , v⃗ ) and dEDX(u⃗ , v⃗ ) are symmetric but dM 3 S−NLM (u⃗ , v⃗ ) is not. The end results of

the M3S-NLM procedure results in a new less noisy image. This entire matching and averaging procedure is repeated

using  every  pixel  in  the  image,  aggregating  the  resulting  denoised  blocks,  thereby  producing  a  high  quality
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reconstruction for each pixel at full scan resolution. The schematic description of the procedure is given Fig. 1. As

mentioned before, we suggest to use the NLM principle to compute the final EDX/EELS estimate, which is defined

again as follows: 

I EDX
M 3 S−NLM

(u⃗ , c)=
∑

Δ w⃗∈M

I EDX(u⃗+Δ w⃗ ,c )w( I , u⃗ , u⃗+Δ w⃗)

∑
Δ w⃗∈M

w( I , u⃗ , u⃗+Δ w⃗)
eq. 12

with weights defined as in eq. 3, but with the distance  d  replaced by dM 3 S−NLM  from eq. 11. Note that the

weight w in eq. 12 does not depend on c , but is the same for every channel, since the distance dEDX in eq. 7 only

depends on the spatial location. 

For the STEM modality, we used the BM3D method to compute the final estimate. It is similar in structure to the NLM

algorithm, but it does not simply average similar structure windows. Instead, it filters them collaboratively in a suitably

transformed domain, such as Fourier or Wavelet spaces. Since the details of BM3D algorithm are already given in

previous studies, we only described the main steps and refer to Refs. 18, 20, 23 for more details and exact formulas. The

main steps of BM3D are as follows. For each pixel in the image, the first 256 most similar structure windows are

grouped  and  stacked  into  a  3d  tensor.  Then,  a  domain  transform  is  applied  (e.g.  Fourier  or  Wavelet)  and  the

corresponding coefficients are shrinked by a suitable operator (e.g. hard-thresholding or Wiener filter). It follows, the

inverse of the chosen domain transform is applied. This results in a group of denoised structure windows, which are

again aggregated to form the reconstruction. In each pass, this process is repeated for every pixel to form an entire

filtered image. BM3D algorithm comprises two such passes, using hard-thresholding for coefficient shrinkage in the

first pass and Wiener filtering in the second pass (with coefficients based on the initial estimate from the first pass). 

It is important to point out that the weighted average is computed using the full spatial and spectral resolution images.

The reduction in spectral resolution is only encoded into the EDX similarity weights to account for the reduced SNR,

which is mitigated by the preserved spatial resolution within the STEM similarity weights. In practice, to calculate

I EDX
M 3 S−NLM

, we sum the 256 most similar structure windows, ranked by their  d M 3 S−NLM values, to limit the

contribution of  non-similar  structure windows on the denoised images.  For the STEM modality,  this  restriction is

inherently given by the grouping performed as part of the BM3D procedure.

However, at least one of the similarity measures (e.g., STEM, EELS or EDX signals) should operate at full spatial

resolution. After a set of associated pixels has been found, the averaging is performed at the full resolution for all scans,

yielding a high-resolution reconstruction of the entire dataset.  In these studies,  the spectral  resolution of  the EDX

dataset is reduced by a factor of eight for evaluating the similarity measure, the spectral resolution of the EELS dataset

is kept unchanged as the signal-to-noise was large enough to define the similarity windows.

Let us point  out that  decreasing the spatial resolution of any of the similarity measures can only be done without

affecting the spatial resolution of the denoised dataset, as long as there are no two neighborhoods with the following

properties:  1) different full  resolution representation in the modality with the reduced similarity measure,  2) same

reduced  resolution  representation  in  the  modality  with  the  reduced  similarity  measure,  3)  same  full  resolution

representation in all other modalities. This is not the case for any of the results presented here, and we consider it

unlikely in practical settings. A detailed description of the algorithm is given in the Ref. 24.
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2.2 Experimental setup

In order to directly map the compositional variations at atomic scale, we prepared cross-sectional STEM specimens by

ion beam milling. The Al1-xInxN sample is highly sensitive to ion milling and therefore the final cleaning was performed

with low energy Ar+ ion bombardment (0.5 eV) at liquid N2 temperature using a Fischione Nanomill system. Structural

investigations of the GaN/Al1-xInxN specimen were performed at 200 kV using a thermofisher scientific Titan scanning

transmission electron microscope equipped with a spherical aberration corrector at the condenser plane, resulting in a

sub-Angstrom probe diameter with a convergence semi-angle of 20 mrad and a four quadrant EDX detector25.  The

STEM image and EDX dataset sizes 744 x 561 and 744 x 561 x 2048 pixels respectively and the energy per channel of

10 eV was used. LaMnO3 particles were dispersed on a lacey carbon grid and investigated using a double corrected

thermofisher scientific Titan TEM, with a Cc corrector in the image plane, at  300 kV26.  The EEL spectrum image

analyzed below was acquired at a collection semi-angle of 40 mrad and a probe convergence semi-angle of 20 mrad.

The subpixel scanning mode was used to record the EELS dataset, i.e. the STEM signal was continuously scanned

inside a given EELS pixel, thus one pixel of the EELS dataset corresponds to 16x16 pixels in the STEM image. This

subpixel  scanning approach was used to increase the SNR of the EELS spectra without compromising the STEM

resolution. The STEM image and EELS dataset sizes are 368x1696 and 23x102x2048 pixels respectively and an energy

dispersion of 0.1 eV/channel was used.

2.3 Generation of Synthetic EDX datasets

In order to support our claim, we constructed an artificial dataset where the ground truth STEM image consists of a

periodic pattern of exactly identical Gaussian functions. As the intensities of both the STEM and EDX signals scale

with the beam intensity  for  given set-up and specimen configuration,  the ground truth EDX map was defined by

multiplying the ground truth STEM intensities by the EDX to STEM experimental intensity ratio and assigning the two

different spectra to groups of neighboring atomic columns in an alternating fashion. The artificial noisy measurements

for this dataset were created by applying Poisson noise to the EDX map. Accordingly, the individual noisy spectra

contain 1-3 counts in a few channels while all other channels are equal to zero. For the STEM image, we applied mixed

Poisson-Gaussian noise and chose the parameters such that the resulting image looks similar to the experimental one in

Fig. 2.

2.4 EDX and STEM simulations

For a given probe position, the fraction of incident electrons causing ionization events that can subsequently produce

the X-ray peak under consideration, accounting for the dynamical elastic and thermal scattering of the electron probe

was calculated based on the quantum excitation of phonons (QEP) model27  as implemented in the μSTEM simulation

suite28 and as discussed further in Ref. 5.

3. Results

3.1 Application to atomic resolution EDX dataset

Epitaxially grown Al1-xInxN alloys on GaN substrates have many interesting properties for optoelectronic and electronic

applications due to the tunable band gap ranging from 0.7 eV (InN) to 6.2 eV(AlN), obtained by controlling the In to Al

ratio29. The quality and the properties of the Al1-x InxN materials have been shown to depend on strain and compositional
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fluctuations30, 31. Even small In fluctuations affect the local band gap, the photoluminescence, and carrier scattering, and

are responsible for changing the properties of quantum heterostructures or high electron mobility transistors32, 33. It is

therefore  of  high  importance  to  identify  the  composition  fluctuations  in  Al1-xInxN.  The  analysis  of  atomic  scale

interdiffusion in GaN/Al1-xInxN interfaces at the atomic scale has been reported using high resolution (HR-)STEM34.

The HR-STEM images were used to determine the absolute concentration of  the heavy species by comparison of

experimental data and simulations, but were not sufficient to recover the possible concentration fluctuation of the light

species  at  atomic  resolution34, 35.  On  the  other  hand,  windowless  EDX  detectors  are  able  to  record  elemental

characteristic  X-ray lines  at  atomic resolution for  low atomic number elements.  Unfortunately to  date,  due  to  the

extreme sensitivity of this material to the electron beam irradiation, only low spatially resolved EDX datasets have been

reported37, 38.  Therefore, this system is ideal to apply the M3S-NLM method.

EDX maps extracted from raw and M3S-NLM denoised datasets recorded near the GaN/Al1-xInxN interface are depicted

in Fig. 2. The improvement in the SNR after applying the M3S-NLM method is significant compared to the raw dataset.

Figure 3a shows a representative raw EDX spectrum of an individual pixel (labeled ‘Single Raw’) that contains only

two pixels with non-zero values. Thus, due to the poor SNR of the EDX dataset, a direct integration of the intensities at

the N Kα, Ga Kα, Al Kα and In Lα lines does not allow one to distinguish the atomic columns in the EDX maps (Fig.

2a). Despite the poor SNR of each individual spectrum, the raw average spectra (labeled ‘Ave. Raw’ in Fig.3a) across

the entire dataset contains the characteristic X-ray lines of interest, including the N Kα line, demonstrating that the

spectroscopic information is indeed present  in  the raw EDX dataset.  Figure 3a also shows single (labeled ‘Single

Denoised’) and averaged (labeled ‘Ave. Denoised’) EDX spectra after applying the M3S-NLM method. The ‘single

denoised’ spectrum contains X-ray peaks of the elements of interest which were not visible in the ‘single raw’ spectrum

extracted at the same position. The two averaged spectra are identical, their difference labeled ‘ Ave. difference’ in Fig.

3a, indicating information was neither lost nor added in the spectral domain. The elemental EDX maps extracted after

applying the M3S-NLM method contain the chemical information at atomic scale for the N Kα, Ga Kα, Al Kα and In

Lα X-ray lines and allow a detailed description of the diffusion occurring at the interface (Fig.  2b). It is important to

note the atomic information was present in the raw EDX dataset as a sub-angstrom probe was used to collect the spectra

but it was previously mask by the very poor SNR of the dataset. Here, we have been able to separate the signal from the

noise, revealing the atomic resolution information contained in the EDX dataset by making use of the atomic resolution

information clearly visible in the ADF STEM image which was acquired in parallel. 

Figure 3b shows the integrated elemental profiles parallel to the GaN/Al 1-xInxN interface for the raw dataset while Fig.

3c illustrates the same for the M3S-NLM denoised dataset. The diffusion of heavy species (Ga and In) over five atomic

layers is expected for the observed contrast variation across the interface in the STEM image. The diffusion of Al inside

the GaN layer is not visible in the STEM image but can be measured in the EDX Al maps. The diffusion length of the

Ga, Al and In have been estimated using the Fick’s law in one dimension (eq. 13) fitted on the NLM denoised dataset

(the use of the denoised data allows one to improve the fit quality, i.e., smaller standard deviation as compared to fits

performed on the raw dataset as the spread of the experimental values is reduced by the denoising procedure) and found

to  be  0.89,  0.71 and  0.99 nm  respectively  (Figs.  4).  The  Fick’s  law  in  one  dimension  was  fitted  using  the

optimize.curve_fit function of the scipy Python-based package according to the following formula: 

n ( x )=n0(erfc(
x − x0

b ))+c eq. 13
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with  b=2√Dt , D being the diffusion constant, t the time at the considered temperature to which the diffusion

happens, n0 the number of EDX counts at the interface, x0 the position of the interface and c the concentration at the

interface.

The M3S-NLM method also allows one to extract information at the N Kα edge that does not contribute to the STEM

signal  in  a  discernible  way.  The integrated  N Kα signal  (Fig.  2a)  shows a  noisy contrast  as  well  as  its  intensity

integrated parallel to the interface in Fig. 3b. On the denoised dataset, an increase of the N concentration is observed at

the GaN/Al1-xInxN interface (Fig. 3c). The integration of the N Kα signal parallel to the interface clearly shows the two

first atomic columns of the GaN layer containing an excess of N of approximately 2 % as well as the three neighboring

atomic columns in the Al1-xInxN layer, albeit in a lesser extent. To confirm the fluctuations of the N Kα intensities are

not due to the denoising procedure, we calculated the mean values of the X-ray counts at the N Kα peak (in the energy

range 0.34-0.475 keV on the raw dataset) in three distinct areas delimited by the vertical dotted lines Figs. 3b,c. This

gives  the  values  of  0.134,  0.141  and  0.128  X-rays  counts  per  pixel  for  the  GaN,  interface  and  Al1-xInxN  areas

respectively.

The  investigation  of  atomic  diffusion  at  interfaces  with  TEM  techniques  is  not  directly  interpretable  since  the

broadening  of  the  beam  inside  the  specimen  could  result  in  apparent  interdiffusion.  To  estimate  this  effect,  we

performed multislice simulations of an atomically flat interface and calculated the STEM and EDX integrated images.

The results are presented in Fig. 5. Both, Ga K and In L maps show a few percent contribution across the interface,

where these elements are not present, that is not likely to be visible experimentally. Therefore significant experimental

signal  beyond this  is  an  indication  of  diffusion  of  Ga,  In  and  Al  across  the  interface.  We have simulated  the  N

contributions from the GaN layer (N1 K) and from the Al1-xInxN layer (N2 K), as well as the total N contribution. Some

"wrap around" effects can be seen for the N maps. It appears the N signal is present in both the N and the column with

metal atoms, the brightest peaks being at the location of the N columns. The contribution at the columns with metal

atoms  is  due  to  thermally  scattered  electrons  when  the  probe  is  on  the  "adjacent"  column  of  heavy  atoms  as

demonstrated by the simulations that separate the elastic and thermal diffuse scattering (TDS) contributions to the total

EDX signal, Fig. 6. Also of note is the visible difference in N intensities (N1 K and N2 K) in both materials, despite

each material containing the same concentration of N atoms. In both the simulations and the denoised experimental N

concentration profile (Fig. 3c), the averaged N signal intensity is larger in the GaN layer compared to the Al 1-xInxN

layer, despite the same N atomic density for each of these stoichiometric compounds. Therefore, this effect should not

be associated with a composition variation across the specimen but is due to a difference in the electron beam-matter

interactions as a function of the local chemistry of the material. In the simulations, the value of x in the Al1-xInxN layer is

0.2 resulting in an average atomic number at  the metal atom site of 20.2 (average of In 49 and  Al 13), which is

significantly lower than the atomic number of Ga, 31. Heavier atoms are known to have a stronger channeling effect on

the electron beam therefore this could may in part explain the increased intensity seen in the GaN layer.39

3.2 Application to high resolution EELS dataset

Perovskite oxide nanostructures are under intensive investigation using TEM techniques due to their wide range of

possible applications and, in particular, due to their exceptional suitability for oxygen electrocatalysis that takes place

on their surface or subsurface regions40. The knowledge of the surface polarity and oxidation state of the transition

metals present in the perovskite structure is fundamental to a better understanding of the mechanism by which the
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electrocatalysis  proceeds.  In  the case of  LaMnO3,  it  was theoretically  predicted that  a  change of  the coordination

number can affect the activity towards the oxygen reduction reaction (ORR). In addition to elemental mapping, EELS is

able to deliver chemical information, such as oxidation state or local atomic coordination at atomic scale 2.  Density

functional theory calculations for the Mn L3 edge have shown that coordination and oxidation state changes at the

surface result in a unique surface reconstruction that favours ORR41, 42.

We used EELS, simultaneously with STEM, to record an atomically resolved spectrum image of LaMnO 3 particles

probing the O K and Mn L edges at atomic resolution. The L3 Mn edge has been shown to shift approximately 1.5 eV, to

lower energies,  when the oxidation state  of the Mn changes from Mn3+ (as is  in the bulk state) to Mn2+  43, 44.  The

experimental L3 Mn edge has thus been integrated around (635 – 642 eV) and (642 – 648 eV) which correspond to the

energy ranges of each oxidation state. The EELS spectra are rather noisy (typical individual spectra are shown in Fig. 8)

and do not allow one to obtain atomic resolution integrated EELS intensity maps around the energy range of interest, as

shown Fig. 7a. We applied the NLM method to the EELS dataset and integrated the energy ranges around the O K and

Mn L edges. The results are given in Fig. 7c, a clear difference is observed between the surface and sub-surface region

compare to the bulk region. This result indicates the presence of a different oxidation or atomic coordination between

the two regions. One difficulty in extracting integrated maps from EELS datasets is the removal of the background

contribution  in  front  of  the  edges  of  interest  before  integrating  over  a  given  energy  range.  We  noticed  that  the

background subtraction gives better results after applying PCA to the raw dataset (Fig. 7b). We then used the same

approach of applying PCA to the NLM denoised data.  The integrated maps are presented in Figs.  7d. The atomic

resolution is recovered for the three O maps while the resolution of the Mn maps is improved. 

The O pre-peak in the 528 – 532 eV range is present in the bulk part and vanishes toward the surface as shown by the

two extracted NLM denoised spectra Fig. 8. This pre-peak is linked to electron exchange between the Mn and O and it

is a signature of the hybridization of the Mn 3d with the O 2p energy levels. Similarly, the Mn L3 edge is shifted toward

lower energy for the Mn2+ oxidation state compared to the Mn3+ and Mn4+ states43, 44.

4. Discussion

The previous two examples have shown the success of applying the (M3S-)NLM method to recover the atomically

resolved EDX or EELS datasets for which the resolution of the reconstructed maps is limited by their poor SNR. The

spatial averaging of the low SNR spectroscopic datasets is based on the similarities in the STEM and spectroscopic

dataset modalities. The information of the HAADF-STEM image is sensitive to high atomic numbers while the EELS

datasets are more sensitive to low atomic number elements and the EDX datasets contain information for both low and

high atomic numbers. A naive picture would be to think that the local averaging of low atomic number elements cannot

be done based on the STEM modality, but it has to be kept in mind that both modalities should match (through their

respective structure windows distances) in order to be locally averaged. The success of this double block matching

approach is demonstrated for the N map where the N atomic positions are found to be shifted compared to the metallic

atomic columns and for the O K edge where fine structure information is recovered at atomic scale.

Another point to address is what minimum SNR value is required in order to extract meaningful information using the

M3S-NLM method. We focus on the EDX spectroscopic dataset as their SNR is orders of magnitude lower compared to

their EELS counterpart. Synthetic EDX datasets are generated based on the dataset of Fig. 2, with distinct regions of

GaN and Al1-xInxN (see method section 2.3). The average number of counts per  energy channel in the EDX dataset
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modalities is varied to 7.3x10-5, 1.4x10-4, 7.0x10-4 (which corresponds to the SNR of the EDX dataset of Fig. 2), and

3.6x10-3 counts per energy channel, which reflects an increasing electron dose to which the specimen is exposed. The

cross-sections of the events leadings to the STEM and EDX signals are considered to be independent of the electron

dose.  Thus, the ratio of the average number of counts of the STEM to the EDX signals is kept constant. Figure 9 show

the elemental maps extracted from the raw datasets (left columns) and after applying the M3S-NLM method (right

columns). For the lowest number of counts, the local information is not recovered for both modalities. For the synthetic

dataset (with 1.4x10-4  counts/energy channel, only the atomic resolution of the STEM image is recovered. For a low

SNR dataset, if the similarity measurement is not able to distinguish the given regions, then information in the spectral

domain may originate from another region. To check for the presence of this artifact, the average of each of the regions

for the raw datasets and after M3S-NLM denoising are compared. An artifact free denoising dataset should lead to

similar averaged spectra. For the EDX dataset with signal of 7.0x10 -4 counts per energy channel and larger, the different

elements are attributed to their respective regions at the atomic level.

5. Conclusion

We have successfully applied the (M3S-)NLM technique to EDX and EELS datasets to retrieve maximum information

at atomic resolution for specimens that degrade under prolonged electron beam exposure or when the SNR is limited by

the exposure time (that relates to the specimen drift). We confirmed the robustness of this methodology by applying it to

low  SNR  EDX  and  low  signal-to-background  EELS.  We  show  that  the  algorithm  leads  to  important  practical

conclusions that were out-of-reach when using classical denoising techniques (MVA-based techniques). The method

presented in this article leads to important practical implications for retrieval of maximum information in EDX and

EELS datasets. We discuss the possible artifacts and demonstrate the method is robust against low correlation between

the information contained in the STEM and the spectral modalities. The use of the M3S-NLM method is also expected

to open-up the possibility of spectroscopic analysis of extremely beam sensitive biological specimens as no assumption

on the need of atomically resolved STEM image is needed.
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Figures captions:

Figure 1: Illustration of the M3S-NLM denoising procedure. The entire procedure is repeated while comparing the

reference block with all possible blocks in the dataset and by shifting the reference block pixel by pixel and line by line

across the entire scan area. (a, b) Schematic to calculate the STEM structure window distances, d STEM , and (c, d) to

10/13



calculate EDX structure window distances, d EDX . (e) The EDX and STEM structure window distances are merged

in a single dM 3 S−NLM  distance that accounts for the similarities for both the EDX and EELS dataset as described in

eq. 11. (f, g) Schematic of the reconstructed datasets, accounting for similarities between the imaging and spectroscopic

datasets via d M 3 S−NLM , obtained from eqs. 12 and 13. The procedure is similar for EELS dataset where EDX is

replaced by EELS.

Figure 2: HAADF-STEM images and EDX maps of the N Kα, Ga Kα, Al Kα and In Lα edges simultaneously recorded

at the GaN/Al1-xInxN interface for the (a) raw and (b) M3S-NLM datasets. The color-scale indicates the atomic percent

concentration of the denoised maps. The field of view of each image is 9 nm by 6.8 nm.

Figure 3: (a) Averaged and single spectra extracted from the raw and denoised dataset. From the top to the bottom:

‘Ave. Denoised’ and ‘Ave. Raw’ are averaged over the entire EDX dataset for the NLM denoised and raw dataset, ‘Ave.

difference’ is  the difference between the two averaged spectra,  and ‘Single Denoised’ and ‘Single Raw’ are single

spectra extracted from the middle pixel of the dataset. ‘Single Raw’ contains only two pixels with non-zero values and

is representative of the dataset. ‘Single Denoised’ is extracted from the same position as ‘Single Raw’ after applying the

M3S-NLM denoising procedure.  Note  the  difference  in  vertical  scales  between the  spectra.  (b-c)  Integrated  EDX

intensity profiles parallel to the GaN/Al1-xInxN interface extracted from the (b) raw and (c) M3S-NLM denoised EDX

maps (Figs. 2).

Figure 4: EDX profiles after applying the M3S-NLM denoising technique fitted using Fick’s law shown in eq. 13. The

fitted coefficients are shown next to the profiles of the (a) Ga Kα, (b) Al Kα and (c) In Lα and described in the main

text.

Figure 5: Simulated HAADF and EDX images of the  GaN/Al1-xInxN interface. The N1 K and N2 K maps are the

integrated signals due to the N atomic columns of the GaN and  Al1-xInxN layers, respectively. The profiles show the

integrated EDX and HAADF calculated signals integrated along the interface. To account for the finite source size, a

blurring of 0.7 Å was applied. The K-series and L-series account for the all the transitions, i.e., from the 1s and 2s/2p

respectively which differs from the experimental data which account only for the Kα and Lα transitions.  The field of

view of each image is 3.3 nm by 3.9 nm.

Figure 6: Simulation of the (a) elastic, (b) thermal diffuse scattering (TDS) contributions and of the (c) total X-ray

signal, i.e., the sum of (a)+(b), to the N maps at the GaN/Al 1-xInxN interface. The field of view of each image is 3.9 nm

by 3.3 nm.

Figure 7: (a) Integrated EELS-STEM dataset of LaMnO3 at the O K and Mn L edges. The different peaks have been

integrated  to  track  the  EEL fine  structure  changes  across  the  specimen.  The  O  K  edge  is  integrated  over  the

528 – 532 eV,  532 – 536 eV  and  536 – 543 eV  ranges.  The  Mn  L edge  is  integrated  over  the  635 – 642 eV  and

642 – 648 eV ranges.  The maps  are  integrated  from (a)  the  raw dataset,  (b)  after  PCA denoising,  (c)  after  NLM

denoisng and (c) after NLM denoising and followed by PCA. The field of view of each image is 1.8 nm by 8.5 nm.

Figure 8: Spectra extracted from the positions A and B marked in Fig. 7. The bottom two spectra are extracted from the

subsurface region (marked B in Fig. 7) and the top two spectra are extracted from the bulk part (marked A in (Fig. 7)).

Figure 9: Synthetic EDX dataset used to test the robustness of the M3S-NLM denoising method against low SNR and

against the none correlation between the HAADF-STEM and EDX-STEM modalities for the N Kα and Al Kα edges. (a,

b) corresponds to an averaged signal of 7.3x10-5 count/pixel, (c, d) of 1.4x10-4 counts/pixel, (e,f) of 7x10-4 counts/pixel,

i.e., the signal to noise of the EDX-STEM dataset of the Fig.  2 and (g, h) of 3.6x10-3 counts/pixel. (a, c, e, g) rows are
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the reconstructed maps from the raw synthetic dataset while (b, d, f, h) are reconstructed from the M3S-NLM denoised

dataset. From the top to the bottom, the rows correspond to the HAADF, N Kα, Ga Kα, Al Kα and In Lα reconstructed

maps. The field of view of each image is 3.1 nm by 3.1 nm.
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