
Solving nonlinear parabolic PDEs in several

dimensions: parallelized ESERK codes

J. Mart́ın-Vaqueroa,∗, A. Kleefeldb

aETS Ingenieros industriales, Universidad de Salamanca. E37700, Bejar, Spain
b Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre.

Wilhelm-Johnen-Straße, 52425 Jülich, Germany

Abstract

There is a very large number of very important situations which can be
modeled with nonlinear parabolic partial differential equations (PDEs) in sev-
eral dimensions. In general, these PDEs can be solved by discretizing in the
spatial variables and transforming them into huge systems of ordinary differen-
tial equations (ODEs), which are very stiff. Therefore, standard explicit meth-
ods require a large number of iterations to solve stiff problems. But implicit
schemes are computationally very expensive when solving huge systems of non-
linear ODEs. Several families of Extrapolated Stabilized Explicit Runge-Kutta
schemes (ESERK) with different order of accuracy (3 to 6) are derived and an-
alyzed in this work. They are explicit methods, with stability regions extended,
along the negative real semi-axis, quadratically with respect to the number of
stages s, hence they can be considered to solve stiff problems much faster than
traditional explicit schemes. Additionally, they allow the adaptation of the step
length easily with a very small cost.

Two new families of ESERK schemes (ESERK3 and ESERK6) are derived,
and analyzed, in this work. Each family has more than 50 new schemes, with up
to 84.000 stages in the case of ESERK6. For the first time, we also parallelized
all these new variable step length and variable number of stages algorithms (ES-
ERK3, ESERK4, ESERK5, and ESERK6). These parallelized strategies allow
to decrease times significantly, as it is discussed and also shown numerically
in two problems. Thus, the new codes provide very good results compared to
other well-known ODE solvers. Finally, a new strategy is proposed to increase
the efficiency of these schemes, and it is discussed the idea of combining ESERK
families in one code, because typically, stiff problems have different zones and
according to them and the requested tolerance the optimum order of convergence
is different.

Keywords: Higher-order codes, Multi-dimensional partial differential

∗Corresponding author
Email addresses: jesmarva@usal.es (J. Mart́ın-Vaquero), a.kleefeld@fz-juelich.de

(A. Kleefeld)

Preprint submitted to Elsevier June 18, 2020

equations, Nonlinear PDEs

1. Introduction

There is a very large number of areas where many important problems
are modeled with nonlinear partial differential equations (PDEs) in several di-
mensions. Perhaps, one the most common type of PDEs is the second-order
parabolic one. Some examples of areas (but not limited) where complex prob-
lems of this type may be needed are: atmospheric phenomena, biology, combus-
tion problems (where the reaction is particularly very explosive), fluid mechanics
(including Navier-Stokes problems), lasers, molecular dynamics, nuclear kinet-
ics, in industrial processes of different types, in medicine, in financial mathemat-
ics (as PDEs, or SPDEs), in problems related to heat transfer (a dozen sub-areas
are mentioned in [4]), and chemical reactions. In fact, perhaps this is the area
that appears more extensively in the scientific bibliography [4, 8, 9]. In many
cases, to solve this type of nonlinear PDEs, spatial variables are discretized
[9] (through finite differences, spectral techniques, alternating direction implicit
techniques,...). PDEs are transformed into nonlinear ordinary differential equa-
tions (ODEs) of very high dimension, often called semi-discrete systems.

These ODE systems are usually very stiff, because of the spatial discretiza-
tion of elliptic operators. Hence, traditional explicit methods are usually very
slow (it is necessary to use very small length steps, see [8, 9]), otherwise the
algorithms are not stable and therefore do not converge to the solution). There-
fore, in this type of problems, researchers often consider implicit schemes based
on BDF and Runge-Kutta methods with good stability properties. However, if
the dimension of the ODE system is very high (usual in several dimensions) it
is necessary to solve very large nonlinear systems at each iteration. Recently,
numerous techniques have also been proposed based on approximations of ma-
trix exponentials, and explicit-implicit algorithms. However, in both cases there
are very costly operations when the system dimension is high (and other con-
siderations should be taken into account): either it is necessary to approximate
functions related to exponentials of matrices or decompose very large matrices.

In many of these cases, it is known that the Jacobian eigenvalues of the
function are all in a certain type of region. In the case of parabolic problems of
the second order, the most common is that these values are all real negative or
are very close to this semi-axis. When the Laplacian is discretized using finite
differences or some spectral techniques the associated matrix has this type of
eigenvalues. In this type of problem, where the nonlinear ODE system has a very
high dimension and the eigenvalues of the Jacobian are of this class, stabilized
explicit Runge-Kutta methods (also called Runge-Kutta-Chebyshev methods)
are a very powerful tool (see [1, 5, 6, 9, 10, 19, 21, 22] and references cited
therein).

These types of algorithms are totally explicit, and they have regions of sta-
bility extended along the real negative axis. Although schemes typically have
order 2 (some of them 3, 4), these integrators have many steps; several of them

2

are intended to meet the conditions of consistency, and the rest seek to extend
as much as possible the region of stability along the negative real axis. In this
way, these regions of stability increase quadratically with the number of stages.
Thus, the number of steps per step, s, is greater than in a classic Runge-Kutta.
However, fewer steps are needed (for stability issues). They have been reduced
proportionally with s2, thus the total computational cost is reduced proportion-
ally with s.

Logically we are looking for simple procedures that allow us to construct
algorithms with high order, up to a high number of stages, and with a region
of stability as long as possible. But we also need to construct Runge-Kutta
methods that have optimal internal stability properties. Lebedev and Finogenov
showed that such algorithms often suffer from two types of difficulties [14]:
internal stability and error propagation. Later, many research papers have
developed algorithms trying to reduce these difficulties: DUMKA [19], RKC
[21], ROCK2 [2], ROCK4 [1], or SERK2 [15], for example. However, most
of them are second-order, or have some problems with error propagation and
internal stability when the number of stages is large.

In [18], recurrence formulas similar to those of [15, 21] were used and com-
bined with extrapolation techniques to obtain methods of order higher than
two. In particular, a family of fourth-order methods, and an algorithm with
these schemes were derived. In [17], a similar procedure was employed to de-
velop a family with more than 40 different fifth-order methods, and excellent
stability properties and numerical results.

In this work, we continue with the derivation and analysis of more families
of extrapolated stabilized Runge-Kutta (ESERK) methods: we obtained 4 fam-
ilies, with third, fourth, fifth and sixth orders of convergence. In total they are
more than 200 algorithms since, at each family, we built the algorithms for s =
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60,
70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200,
1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000, s
being the number of stages of each first-order stabilized Runge-Kutta (SERK)
algorithm (that we extrapolate to increase the order of convergence), nt = np×s
the number of stages of the ESERK method, and np = 6, 10, 15, 21 respectively
for orders p = 3, 4, 5, 6 of convergence. Two of these families (those with third-
and sixth-order) schemes are completely new. We provide details for their con-
struction and analysis in Section 2. In Section 3, we explain how to develop
efficient codes in parallel to decrease computational times. These new codes
automatically choose the length step and the optimum number of stages at each
step of the Runge-Kutta method. It is tested in Section 4, comparing the new
parallel algorithm with the previous sequential ones, and also with other ex-
cellent ODE solvers such us RKC, ROCK4, IRKC, and PIROCK. These four
parallel codes are freely available under:
https://github.com/kleefeld80/ESERK3-6parallel.git so anybody can use them.

Finally, we compare numerically the parallel algorithms for one problem and
several different zones of integration: (i) one interval where solutions change
very fast because of the transient terms, (ii) and another where solutions are

3

smoother. We check how our codes behave in a different way depending on the
order of convergence and the type of interval. This fact suggests that it might
be interesting to combine all these families in one code. Some discussion and
conclusions are provided in Section 5.

2. Construction of extrapolated explicit methods

There is a large amount of areas where many situations are modeled with
nonlinear parabolic equations satisfying

ut = div (a(x, t)∇u) + f(x, t, u), ∀(x, t) ∈ QT = Ω× [0, T],

together with some initial and boundary conditions. This is the reason many
researchers have developed and analyzed so many numerical procedures to solve
these PDEs. When f(x, t, u) clearly affects the numerical solution of the PDE,
and Ω is not a complicated region, most often spatial discretizations are con-
sidered, and the PDE is transformed into a system of ODEs. However, Ω ⊂ Rn

and for most of the real problems n = 2, 3, and therefore the system of ODEs
has a very large dimension. Alternating Direction Implicit (ADI) schemes might
be another different option, however the order of convergence of these methods
is low.

However, in some cases, we would like to obtain more accurate solutions.
Hence, our goal is developing higher-order methods for stiff, very large systems
of ODEs, which can be used after semi-discretizing (discretizing in the spa-
tial variables) with higher-order schemes the previous parabolic PDEs. In this
section, we shall explain how to build higher-order ESERK methods.

The main ingredient is the stabilized explicit Runge-Kutta algorithms (SERK)
derived in [11, 12, 15, 16], but these previous SERK schemes were only second-
order. In [18], first-order SERK schemes were combined with extrapolation
techniques to build a fourth-order ESERK scheme (ESERK4). And in [17], a
similar procedure was employed to develop a family with more than 40 different
fifth-order methods (ESERK5). For this new work, we added new algorithms to
both previous families ESERK4 and ESERK5, and constructed other two whole
new families: ESERK3 and ESERK6 with more than 50 new methods each one.

2.1. Construction of first-order stabilized explicit methods

First-order stabilized explicit Runge-Kutta (SERK) methods have been de-
rived in several previous works (see [20, 14, 13] and references therein). Most of
them use Chebyshev polynomials of the first kind of order s (s = stages), which
are defined by the recursion:

T0(x) = 1, T1(x) = x, Ts(x) = 2xTs−1(x)− Ts−2(x). (1)

If we denote

Rs(z) =
Ts(w0,s + w1,sz)

Ts(w0,s)
, w0,s = 1 +

µp

s2
, w1,s =

Ts(w0,s)

T ′
s(w0,s)

, (2)

4

(s being the number of stages of the first-order method, z is a function of x
depending on this values s) we obtain polynomials (the so-called shifted Cheby-
shev polynomials) oscillating between −λp and λp (for a value 0 < λp < 1 which
depends on µp) in a region which is O(s2), and Rs(z) = 1 + z +O(z2) (as it is
explained, for example in [8]). In the following subsection, we will address how
to calculate these values of λp and µp to guarantee the stability not only of the
first-order SERK methods, but also the higher-order ESERK schemes.

Obviously, we also have to construct explicit Runge-Kutta schemes with
these Rs(z) as stability functions. If we are able to develop these methods,
they would be first-order numerical solvers (because Rs(z) = 1 + z + . . ., and
therefore

∑s
j=1 bj = 1 (bj being the solutions of (5), see Theorem 1 in [11])

with stability regions extended quadratically along the negative real semi-axis.
Actually |Rs(z)| < λp < 1 for z ∈ [−ls,p, 0], which will be very useful in Section
2.2 when we derive higher-order methods through extrapolation.

These explicit Runge-Kutta methods, with internal stability regions given by
the Chebyshev polynomials of the first kind, can be obtained through a three-
term recurrence formula similar to Equation (1). We only have to remember
that the stability functions of identity operator, gs and hf(·) are respectively 1,
Ts(x) and x̄ (x̄ defined from z = 1 + αpx̄, for αp values calculated in Section
2.2), thus we obtain the Runge-Kutta methods with internal stability functions
given by Equation (1):

g0 = yn,

g1 = g0 + αphf(g0),

gj = 2gj−1 − gj−2 + 2αphf(gj−1), j = 2, . . . ,m,

gm+1 = gm + αphf(gm), (3)

gj = 2gj−1 − gj−2 + 2αphf(gj−1), j = m+ 2, . . . , 2m,

. . .

gqm+1 = gqm + αphf(gqm),

gj = 2gj−1 − gj−2 + 2αphf(gj−1), j = qm+ 2, . . . , s.

Finally, we only need to calculate the value of the new approximation yn+1 ≃
y(tn+1) as

yn+1 =

s
∑

j=0

bjgj (4)

where bj are the solutions of the linear system

Rs(z) = b0T0 +

q
∑

j=1

m
∑

i=1

(

bi+m(j−1)TiT
j−1
m

)

+

s
∑

j=mq+1

(bjTj−mqT
q
m) , (5)

5

where Ti = Ti(1 + z/(αps
2). And, in this way, it is easy to demonstrate that

the stability regions of these methods (Equation (4)) are given by Rs(z), in a
similar way as it was done for ESERK4 in Theorem 1 [11].

2.2. Construction of higher-order ESERK schemes

Previously, we did not explain how to calculate λp, nor how to choose the
αp and µp values. All of these values are related with the procedure to derive
higher-order methods using Richardson’s extrapolation:

Let us suppose that we have to compute the numerical results of any initial
value problem (IVP), y′ = f(t, y), y(x0) = y0, and we want to approximate
y(x0 + h). We can do it for various different, and constant, step sizes h1 >
h2 > h3 > . . . (taking hi = h/ni, ni being a positive integer), until we obtain
yhi(x0 + h) := Si,1.

If the method employed has order p, then the global error of any of these
approximations has an asymptotic expansion of the form

y(x)− yh(x) = eph
p + ep+1h

p+1 + . . .+ eNhN +

In our case, we have a procedure to obtain first-order methods, and we would
like to increase the order of the methods. The idea is to eliminate as many
terms as possible from the asymptotic expansion by solving k linear equations
for the unknowns y, ep, ..., ep+k−2.

Actually, this technique has been analyzed before, and it is well-known that
the most economic one is the “harmonic sequence” (1, 2, 3, 4, 5, . . .), for this
reason it is the one employed in this work. When the first scheme is first-order,
the most economical algorithm to calculate the (k+1)−th method Sj,k+1 is the
Aitken-Neville one:

Sj,k+1 = Sj,k +
(j − k)(Sj,k − Sj−1,k)

k
.

In this way, once the first-order approximation is calculated Si,1 as gs in Equa-
tion (3) for hi = h/i, Sp,p is an approximation with order p. We provided
formulae for orders 2, 3, 4, 5 in [18], page 143. The formula for the sixth-order
method can be simplified as

S6,6 =
6480yh/6(x0+h)−14329yh/5(x0+h)+10240yh/4(x0+h)

120

+
−2430yh/3(x0+h)+160yh/2(x0+h)−yh(x0+h)

120 .
(6)

Hence, we can calculate the polynomial of the sixth-order extrapolated
method as P6s(z), then:

P6s(z) =
−Rs(z)+160(Rs(z/2))

2−2430(Rs(z/3))
3

120

+ 10240(Rs(z/4))
4−14329(Rs(z/5))

5+6480(Rs(z/6))
6

120 .
(7)

And therefore

|P6s(z)| ≤
|Rs(z)|+ 160|Rs(z/2)|

2

120

6

+
2430|Rs(z/3)|

3 + 10240|Rs(z/4)|
4 + 14329|Rs(z/5)|

5 + 6480|Rs(z/6)|
6

120
.

We calculate λ6 as the positive real root of the equation

x+ 160x2 + 2430x3 + 10240x4 + 14329x5 + 6480x6

120
= 0.95.

In this way, whenever |Rs(z)| < λ6 ≈ 0.25658, then |P6s(z)| < 0.95. In a
similar way, we calculate the other λp values: λ5 = 0.277923, λ4 = 0.311688,

λ3 = 0.368008, λ2 ≤
√
215−5
20 = 0.483144.

Once, we know the procedure that we will use to construct ESERK schemes
from SERK methods, and we know the λp values, we estimate the µp values such
as Rs(z) obtained from Equation (2) satisfies that |Rs(x)| < λp, ∀x ∈ [−ls,p, 0],
with ls,p as large as possible. Finally, we take αp ≈ dp/2 (the value ls,p/s

2 is
almost a constant for large values s, thus we take dp = l4000,p/(4000)

2).
In Table 1, we provide the numerical values of the parameters λp, µp, dp

and αp, that you we have used to derive the numerical methods for ESERK3,
ESERK4, ESERK5, and ESERK6.

Order λp µp dp αp

3 0.368008 1.38 1.12006 0.56
4 0.311688 1.6875 1.03479 0.5
5 0.277923 1.92 0.980877 0.49
6 0.25658 2.08 0.94795 0.47

Table 1: Parameters values λp, µp, dp and αp for the derivation of the coefficients of the
ESERK methods.

With these values for the parameters λp, µp, dp and αp, with p = 3, . . . , 6,
it is possible to obtain the following results:

Theorem 1. The sixth-order extrapolated stabilized explicit Runge-Kutta meth-
ods, derived through equations (3), (4) and (6), are stable in the interval [−2α6s

2, 0]
(not only, but stability zone includes this region), with s ≤ 4000. Additionally,
the internal stability, at all the stages, includes this region.

Proof. Demonstration of this theorem is analogous to the proof of the first part
of Theorem 1 in [17]. We simply use that Ti = Ti(1 + z/(αps

2) satisfy that
|Ti(z)| < 1 in [−2α6s

2, 0] and |Rs(z)| < |P6s(z)| < 1, ∀x ∈ [−ls,p, 0]. Finally
[−2α6s

2, 0] ⊂ [−ls,p, 0].

Remark: In a similar way, it is possible to obtain that p−th-order extrap-
olated stabilized explicit Runge-Kutta methods derived above are stable in the
interval [−2αps

2, 0].

Theorem 2. Since the values Sj,k represent a numerical method of order k,
the schemes obtained with equations (3), (4), and (6) (analogously formulas
given in [18], page 143, to obtain S3,3, S4,4, and S5,5) converge with sixth-
order (third-, fourth- and fifth-order of convergence), whenever the numerical

7

methods are stable, and the right hand term in the system of ODEs is seven
times continuously differentiable, C7 (Cp+1).

Proof. The demonstration can be done in a similar way as in Theorems 9.1 and
9.2 in [7]. In this case, we know that S1,1 given by SERK methods are first-order
since Rs(z) = 1 + z + a2,sz

2 +

3. Parallel, variable-step and number of stages ESERK algorithm

In this section, we shall explain how to use the methods derived above to
build parallel and sequential, variable-step and variable-number of stages ES-
ERK codes.

3.1. Decreasing memory demand

One can easily store the gj values, with j = 0, . . . , smax (see Equation (3))
in a two-dimensional array of size N ×smax where N is the length of the system
of ODEs (obtained after spatial discretization of the PDE) and smax is the
maximal possible stage of any of the ESERK scheme (until now smax = 4001
stages are possible). To compute the first-order SERK approximation at the
next time step, one only has to evaluate Equation (4), which means linearly
combining all the previous gj for each discretization point in space to obtain
y at the next time step. However, this procedure may cause serious memory
demanding problems if we want to use parallel codes or in 3D PDE problems,
where N is huge after spatial discretizations.

However, the actual calculation of a next time step only involves a three-term
recurrence relation (again see Equation (3)), whenever

sum0 = b0g0, sumj = sumj−1 + bjgj , yn+1 = sums.

This means, one only has to store the previous two time steps to compute the
next time step and at the same time update Equation (4). Precisely, this means
that it suffices to use four arrays of length N , which is a very important progress
for the parallel codes in some PDEs.

3.2. Parallelization

The idea of the parallelization for ESERK schemes is very simple, since
they are constructed through Richardson extrapolation from first-order SERK
methods for different hi length steps, and each one of these SERK approxima-
tions (Si,1) can be computed separately. At the same time, we know that the
computational cost of calculating Si,1 is proportional to the number of function
evaluations necessary to calculate it: i× s.

Thus, for traditional non-stiff ODE solvers, whenever the final order of the
ODE solver is even, Sp,1 was calculated in one processor, Sp−1,1 and S1,1 in
another one, etc., and finally Sp/2,1 in the latest one. If the final order of the
ODE integrator is odd, Sp,1 can be calculated in one processor, Sp−1,1 and S1,1

in another one, etc. As we will check in the numerical section, this provides

8

us an optimum reduction of the computational cost also in our codes, instead

of s × p(p+1)
2 function evaluations per step, we would need only s × p function

evaluations, and therefore the theoretical reduction in the computational cost
is p+1

2 .
Thus, parts of the ESERK codes have been parallelized with OpenMP. As it

was commented previously, precisely, we have parallized the Richardson extrap-
olation, since the calculation of each Si,1 (i goes from one to the order of the
ESERK scheme) is independent. The numerical calculation of one of the Si,1

involves the numerical calculation of i time steps using the recurrence relation
in formulae (3) and (4).

We have considered several different values for the number of threads for
each order p = 3, 4, 5 and 6, to numerically check the reduction in computa-
tional costs. In the following, we list the work balance between the number of
threads using OMP SECTIONS for the different ESERK schemes to compute
the Si,1.

ESERK3:

1 thread: computes 6s functions (S1,1, S2,1, S3,1).
2 threads: first computes 3 time steps of first-order SERK codes (S3,1) and
second computes other 3 time steps (S1,1, S2,1). This is well-balanced and
no further threads can decrease the computational time for the extrapolation
scheme using OMP SECTIONS. Theoretical reduction in the computational
cost should be 2 in comparison to sequential ESERK3 code.

ESERK4:

1 thread: computes 10s functions (S1,1, S2,1, S3,1, S4,1).
2 threads: first computes 5s functions (S1,1, S4,1) and second computes 5 time
steps of SERK codes (S2,1, S3,1). This is well-balanced.
4 threads: first computes 4 time steps (S4,1), second computes 3 time steps
(S3,1), third computes 2 time steps (S2,1), fourth computes 1 time step (S1,1).
This is not well-balanced, but cannot be improved due to the calculation of S4,1.
CPU times should be at most 2.5 times smaller than in the 1 thread.

ESERK5:

1 thread: computes 15s functions (S1,1, S2,1, S3,1, S4,1, S5,1).
2 threads: first computes 8 time steps (S3,1, S5,1) and second computes 7 time
steps (S1,1, S2,1, S4,1). This is nearly well-balanced.
4 threads: first computes 5 time steps (S5,1), second computes 4 time steps
(S4,1), third computes 3 time steps (S3,1), fourth computes 3 time step (S1,1,
S2,1). This is almost well-balanced, but cannot be improved due to the calcula-
tion of S5,1. Theoretical reduction is 3.

ESERK6:

1 thread: computes 21s functions (S1,1, S2,1, S3,1, S4,1, S5,1, S6,1).
2 threads: first computes 11 time steps (S5,1, S6,1) and second computes 10

9

time steps (S1,1, S2,1, S3,1, S4,1). This is nearly well-balanced.
4 threads: first computes 6 time steps (S6,1), second computes 5 time steps
(S5,1), third computes 5 time steps (S2,1, S3,1), fourth computes 5 time step
(S1,1, S4,1). This is nearly well-balanced.

All this information is summarized in Table 2. However, we would like to
notice that these are theoretical bounds, because some small calculations are
done sequentially with the information received from the different processors,
and additionally, we are checking that when the dimension of the system is huge
numerical speed-up factors decrease.

Once, Si,1 are all calculated in parallel, we employ Equation (6) to calcu-
late S6,6 in the case of ESERK6, and similarly for ESERK3 to ESERK5 with
formulae (for orders 3, 4, 5) in [18], page 143.

ESERK 2 threads 4 threads
ESERK3 2 —
ESERK4 2 2.5
ESERK5 1.875 3
ESERK6 1.909 3.5

Table 2: Theoretical reduction factors in CPU times employing parallelization versus the
sequential codes.

3.3. Deriving variable-step and number of stages algorithm

The step size estimation and stage number selection are very similar to the
ones obtained for the ESERK4 algorithm described in [18] or ESERK5 in [17].
First, we select the step size in order to control the local error, and later we
choose the minimum number of stages such that the stability properties are
satisfied.

1. To select the new step size hnew we use those techniques described in [7]
for (traditional) p-th-order extrapolated methods:

hnew = hold min
(

facmax,max
(

facmin, fac · (1/err)
1/p

))

, (8)

with fac= 0.8, facmax= 10 (except after a rejection), facmin= 10−3.

During the study of the code ESERK4 [18], we also considered the PI-
controller described in [8], with the parameters suggested on pages 27-31,
but more steps and function evaluations were necessary, in general.

Comparison between the estimated error and the prescribed tolerance,
err, is calculated as usual:

err =

√

√

√

√

1

n

n
∑

i=1

(

(Sp,p − Sp,p−1)i
sci

)2

, (9)

10

where
sci = (Atoli +max (|y0,i|, |Sp,p,i|) ·Rtoli) /2,

y0,i is i-th component of the solution at the previous step, and Sp,p the
solution previously obtained through extrapolation. Atol and Rtol are
prescribed tolerances that depend on the accuracy that every researcher
wants to use, Atol for the absolute tolerance, and Rtol is the relative one.
In our test problems we considered Atol = Rtol.

Additionally, we try to decrease the number of rejected steps when solving
problems in very stiff regions or models with non-smooth data. Hence, we
employ techniques also used in [12]:

h
(j)
n+i+1

h
(k)
n+i

≤ 1

for the two steps following the rejection (i = 0, 1) and

h
(j)
n+i+1

h
(k)
n+i

≤ 2.5

for the three steps after that (i = 2, 3, 4), unless the interval where there
could be jumps has passed. When the risk of rejections has decreased we
allow again that

hn+i+1

hn+i
≤ 10.

2. We utilize, as usual in other Chebyshev codes (or stabilized explicit meth-
ods), a family of pth-order methods with different numbers of stages, and
therefore we choose the minimum number of stages such that the stability
properties are satisfied to optimize the codes

s >

√

√

√

√

hnewρ
(

∂f
∂y

)

2αp
,

where ρ
(

∂f
∂y

)

is a bound for the spectral radius (the largest eigenvalue

in absolute value of the Jacobian of the function f(y)) and 2αps
2 is the

estimate of the bound of the stability interval.

For the estimation of the spectral radius several procedures have tradition-
ally been considered. If it is not possible to get an estimate of the spectral
radius easily, then a non-linear power method (see [21], for example) is
usually considered.

In Figure 1 a summary of the parallel ESERK6 method using four threads
is given as a flow chart. After the spectral radius is computed via a non-linear
power method as well as the stage and internal stage parameter are initialized,
the main loop starts. It ends when t = T .

11

1st thread 2nd thread 3rd thread 4th thread

compute S6,1 compute S5,1 compute S2,1, S3,1 compute S1,1, S4,1

calculation of S6,6 (see also (6))

calculation of err (refer to (9))

if err too big, reject

else, accept

new time step via (8)

compute spectral radius

select stage & int. stage

ti
m
e
t

Figure 1: Exemplary flow chart of the main loop (as long as time t ≤ T) for the parallel
ESERK6 scheme using four threads. The spectral radius as well as the stage and internal
stage parameter are initialized before the main loop.

4. Numerical results

All numerical results were performed on a regular PC with 32GB of memory
and four Intel i7-4790 CPU @ 3.60GHz cores on a socket each of which can
have two threads (architecture: x86 64, CPU operation modes: 32-bit and 64-
bit, and byte order: little endian). We used the Fortran compiler gfortran gcc
version 7.4.0 on SUSE Linux (version 15.1) specifying the optimization option
-O3 and the OpenMP (version 4.5) option -fopen mp.

We consider two numerical examples. The first example under consideration
is the 2D-combustion example that has previously been solved in [17, p. 31].
The second example is the well-known 2D-Brusselator example also considered
(as Test 3) in [17, p. 32].

4.1. 2D-Combustion problem

In this section, we consider the 2D-combusion model on a unit square. The
non-linear problem from combustion theory (see also [9, 23]) is given by

ut = 2.5∆u+
1

4
(2− u)e20(1−1/u) . (10)

The initial condition is given by constant one. We specify homogeneous Neu-
mann boundary conditions on the south and west edge and constant Dirichlet
boundary conditions with value one on the north and east edge of the square,

12

10
-8

10
-6

10
-4

10
-2

10
3

10
4

Figure 2: Maximal absolute errors versus CPU times in seconds for the second example using
RKC, ROCK4, ESERK3, ESERK4, ESERK5, and ESERK6.

respectively. In total, we used N = 600 equidistant nodes in each spatial di-
rection for the second-order discretization in space. The Neumann boundary
condition is approximated by a second order approximation as well. The final
time is 1.48.

In Fig. 2, we compare errors versus CPU times employed by the parallelized
versions of ESERK3, ESERK4, ESERK5, and ESERK6, and the well-known
sequential codes RKC [21] and ROCK4 [1]. Obviously, since these well-known
codes are sequential, we need to be careful with the comparison among all the
codes.

We check that for larger tolerances, lower-order codes are very efficient.
When errors are between O(10−2) and O(10−4), RKC and ESERK3 are very
fast, however for O(10−6)−O(10−8), ESERK5 and ESERK6 become safer and
faster compared to lower-order algorithms. Therefore, the best order of conver-
gence will depend on the sought errors, but this is not the only issue to observe
when we are choosing the optimum order of convergence for our schemes.

4.1.1. Numerical study of parallelization

Let us now study the improvement provided by the parallelization of the
codes in comparison to the sequential schemes.

The CPU times for the different ESERK methods using either 1, 2, or 4
threads with the parameter N = 600 are shown in Table 3, these CPU times are
for the whole process. Since, errors (with the same tolerance, but comparing
sequential and parallelized versions) are basically the same (normally, at least
the first 3 or 4 digits), we have only compared the CPU times required among
using 1, 2, and 4 threads, and calculated the improvement between using 4

13

threads (in ESERK4, ESERK5 and ESERK6) and 1 thread, or between using 2
threads and 1 thread in ESERK3, this is what we called speed-up factor in the
table. We can notice that numerical speed-up factor are smaller than theoretical
reductions in the computational cost described in the previous section. Also, the
ratios observed in this table are lower when tolerances are smaller. Obviously,
theoretical factors are always bounds, but communications among processors are
necessary, and some small calculations are done sequentially before doing the
loops, therefore numerical factors are clearly smaller, especially for the highest-
order codes. Also, the memory access between the different threads lowers
the theoretical bound. This can be seen when N = 600 is large compared to
N = 300.

ESERK Tolerance 1 thread 2 threads 4 threads Speed-up factor
3 10−6 2865 1650 — 1.74
3 10−8 9671 5667 — 1.71
3 10−10 37947 25236 — 1.50
4 10−6 2518 1396 1203 2.09
4 10−8 3593 1992 1711 2.10
4 10−10 6584 3593 3203 2.06
5 10−6 2928 1693 1211 2.42
5 10−8 4262 2440 1762 2.42
5 10−10 6687 3799 2780 2.41
6 10−6 3873 2189 1454 2.66
6 10−8 5341 3074 2005 2.66
6 10−10 7741 4409 2892 2.68

Table 3: CPU times in seconds (in the whole process) for ESERK 3–6 for 1, 2, and 4 threads
using the tolerances 10−6, 10−8, and 10−10 with N = 600. In this case the dimension of the
system of ODEs is approximately 3.6× 105.

Readers might wonder what happens if we focus only on the parallel part,
if these ratios are closer to theoretical bounds given in Table 2, and they are.
Between a 2% (with larger tolerances, and smaller dimension cases) and a 20%
of the total CPU time (in the sequential code) is required to tasks that they are
done sequentially in all the cases (also with several threads): estimation of the
error, calculation of the next step length, and time of preparation before the
first iteration. This percentage is small for large tolerances, and it grows when
tolerances are smaller, because the average number of stages is smaller for lower
tolerances. This explains that ratios in the previous Table 3 usually decrease
for small tolerances.

CPU times for the different ESERK methods, with N = 300 are shown
in Table 4. When N < 300 ratios (speed-up factors) get closer to theoretical
bounds. And, when tolerances decrease, the differences between theoretical and
numerical rations are, now, not so large as with the previous Table 3.

Step sizes for problem 1 obtained through Eq. (8) in the paper are given in
Fig. 3, with tol = 10−6, 4 threads, and N = 300, for ESERK3 and ESERK6,
respectively. We can check that most of the rejections are in the interval where

14

ESERK Tolerance 1 thread 2 threads 4 threads Speed-up factor
3 10−6 347 184 — 1.97
3 10−8 1041 537 — 1.94
3 10−10 4156 2187 — 1.90
4 10−6 287 145 122 2.34
4 10−8 406 207 173 2.34
4 10−10 751 381 323 2.33
5 10−6 338 181 127 2.64
5 10−8 491 261 182 2.69
5 10−10 800 433 306 2.61
6 10−6 447 235 148 3.03
6 10−8 620 326 205 3.02
6 10−10 908 482 300 3.03

Table 4: CPU times, only in the parallel part, in seconds for ESERK 3–6 for 1, 2, and 4
threads using the tolerances 10−6, 10−8, and 10−10 with N = 300.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.05

0.1

0.15

0.2

0.25

ESERK3 ESERK6

Figure 3: Step sizes for problem 1, with tol = 10−6, and N = 300, for ESERK3 and ESERK6.

the reaction term is very stiff (combustion part). The value of the accepted
and rejected step size at time t is marked by a blue circle and a red asterisk,
respectively.

However, we also repeated the calculations but, again with N = 600. Now,
ratios are not as poor as in Table 3, but speed-up factors are lower (they are
shown in Table 5). As we can see, the dimension of the system of ODEs is
clearly much higher now (approximately four times larger than before).

4.1.2. Developing one code that allows the change of order of convergence

Extrapolation methods have the advantage that in addition to the length
step, also the order of convergence can be changed at each step. Obviously,
this will make the computation of the whole code (where we will include all the
ESERK methods with different order) much more complicated and challenging

15

ESERK Tolerance 1 thread 2 threads 4 threads Speed-up factor
3 10−6 2797 1584 — 1.77
3 10−8 8949 4955 — 1.81
3 10−10 30086 17492 — 1.72
4 10−6 2505 1384 1190 2.11
4 10−8 3560 1959 1678 2.12
4 10−10 6479 3489 3100 2.09
5 10−6 2920 1685 1203 2.43
5 10−8 4243 2421 1743 2.43
5 10−10 6640 3751 2733 2.43
6 10−6 3866 2183 1447 2.67
6 10−8 5327 3060 1991 2.68
6 10−10 7710 4378 2861 2.70

Table 5: CPU times, only in the parallel part, in seconds for ESERK 3–6 for 1, 2 and 4 threads
using the tolerances 10−6, 10−8, and 10−10 with N = 600.

than for any other fixed-order Runge–Kutta method. However, it is well-known
that higher-order methods solve more efficiently and accurately ODEs where
the solution is very stiff than lower-order methods.

As an example, we can do the following test: first we will divide the interval
of integration in two,

• we solve the combustion problem in [0, 1.46] with the parallelized versions
of ESERK3 (2 threads) and ESERK6 (4 threads),

• we solve the combustion problem in [1.46, 1.48] with ESERK3 and ES-
ERK6, and the same tolerances as in the previous interval.

It is explained in [17] (see Fig. 3) that the solution of this problem varies
very slowly in the interval [0, 1.45], and therefore larger length steps are em-
ployed typically and lower-order methods are efficient for moderate tolerances.
In [1.45, 1.46] the solution changes more rapidly, and, from 1.46 to 1.48, ap-
proximately, the solution changes very fast and higher-order methods are more
efficient in this part (it is also explained in the book by Hundsdorfer and Verwer
[9]).

In Table 6, we show the results with both parallelized versions of ESERK3
(2 threads) and ESERK6 (4 threads). In [0, 1.46], ESERK3 is faster for larger
tolerances, ESERK6 has more rejections for tol ≥ 10−6. With errors ∼ O(10−6),
ESERK3 is able to obtain faster an accurate solution. This fact changes clearly
in the interval [1.46, 1.48], for larger tolerances ESERK6 has still some diffi-
culties and more rejections than ESERK3. However, when errors are between
∼ O(10−4) and O(10−5), ESERK6 is now able to obtain faster an accurate so-
lution than ESERK3. Hence, the stiffness of the problem influences in choosing
the optimum order of convergence.

Successful extrapolation codes which allow changing the order, have been
previously described for non-stiff equations (see [7, Ch. II.9]). But results

16

Interval Tolerance Method max. err. Time (s) NFE
[0, 1.46] 10−6 ESERK3 0.1561−5 1314.56 286598

ESERK6 0.12610 2414.85 375779
[0, 1.46] 10−7 ESERK3 0.3517−7 2414.85 517508

ESERK6 0.3345−6 1465.92 469425
[0, 1.46] 10−8 ESERK3 0.6993−8 4286.51 897502

ESERK6 0.3682−7 1687.77 539231

[1.46, 1.48] 10−6 ESERK3 0.1330−3 335.65 59311
ESERK6 0.2158−3 257.01 100013

[1.46, 1.48] 10−7 ESERK3 0.3556−6 622.5 107312
ESERK6 0.1612−5 215.05 100882

[1.46, 1.48] 10−8 ESERK3 0.1269−6 1380. 213967
ESERK6 0.2852−6 317.43 115707

Table 6: Maximal absolute error, CPU times and number of function evaluations for the
methods ESERK3, and ESERK6 for [0, 1.46] (up), and [1.46, 1.48] (bottom).

shown in Table 6 suggest that, precisely in stiff problems, the combination in
one code, of Runge–Kutta methods with different order of convergence is a
very interesting tool to solve faster and more accurately these types of models,
because stiff equations normally possesses regions where the solution is smooth
(and therefore lower-order schemes produce accurate solutions fast), and regions
where the solution vary very fast and therefore smaller length steps and higher-
order algorithms are necessary.

The process of choosing step length and order of convergence in extrapolation
codes for non-stiff equations is known. In general, it follows several stages (see
[7, p. 233–237] for the DIFEX1 code based on the GBS-algorithm):

1. The choice of step size, if we are not changing the order of the method is
done in a similar way as it was described in Section 3.3.

In our case, for ESERK methods, at this stage, we also need to obtain the
minimum number of stages to guarantee stability.

2. An “optimal order” is obtained. For this task, first an amount called
work per unit step, Wk is defined, and a procedure divided in 5 stages is
derived (stages (a)–(e) in pages 234 and 235 in [7]). However, our ESERK
codes require different first-order SERK approximations, with different
stability regions, for their construction. Additionally with parallelization
the improvement given by stages (a), (b), and (e) is minimal. Hence, we
can basically reduce this procedure to stage (c) for ESERK methods.

(a) Convergence in line k− 1: We first compute the k− 1 lines of the ex-
trapolation, and calculate errk−1, Wk−1 (Wk is defined as in Equation
(14)). If errk−1 ≤ 1, then Tk−1,k−1 (the extrapolation approximation
similar to our Sk−1,k−1) is accepted as numerical solution, i.e. the last
line of the extrapolation was avoided.

17

And knew, the following order of convergence, is chosen as k (the
previous one) if Wk−1 < 0.9Wk−2 or k − 1 otherwise.

(b) Convergence monitor: In this stage, the authors studied if the last

step should be rejected. Therefore if errk−1 >
(

nk+1nk

n2
1

)2

(ni being

the positive integers described in 2.2), then there was a rejection, and
they restart with knew ≤ k − 1 and calculate the new hnew. If this
is not correct, they can compute the next line of the extrapolation
method.

(c) Convergence in line k: We will calculate the extrapolation approxi-
mation Sk,k, errk (as it was explained previously in this paper), Wk

(for ESERK methods, Wk is calculated through Equation (14)), and
also Sk−1,k−1, errk−1 and Wk−1 . If errk ≤ 1, then Sk,k is accepted
and we continue the integration with the following values for the next
step:

knew =







k − 1 if Wk−1 < 0.9Wk

k + 1 if Wk < 0.9Wk−1

k in all other cases,
(11)

hnew =

{

hknew if knew ≤ k

hk
Ak+1

Ak
if knew = k + 1,

(12)

where Ak is given by Equation (16) for the parallel codes and (15) for
the sequential ones.

(d) Second convergence monitor: If errk >
(

nk+1

n1

)2

then the authors in

[7] proposed a rejection, and restart with knew ≤ k (and calculate the
new hnew). Otherwise, the code continues with the following step.

(e) Hope for convergence in line k + 1: In this stage, Tk+1,k+1, errk+1

and Wk+1 were calculated (see [7]). If errk+1 ≤ 1, then Tk+1,k+1 is
accepted, and the code continues the integration with the new order:

knew =







k − 1 if Wk−1 < 0.9Wk

k + 1 if Wk+1 < 0.9Wk

k in all other cases,
(13)

If errk+1 > 1, then there is a rejection, and the authors in [7] propose
to restart with knew ≤ k and calculate the new hnew through Equation
(8).

In our case, we should skip stages (d) and (e) of the procedure since
our ESERK codes require different first-order SERK approximations,
with different stability regions, if we take a higher-order, instabilities
may appear.

Again, after a rejection, we avoid to increase the length step (and now)
the order of convergence during several steps.

18

However, there are several important differences between ESERK methods
and the GBS-extrapolation algorithm, and we should take care with them before
developing our code that allows to change the order of convergence:

– In GBS-extrapolation algorithm, Tk,k defined by Equation (9.10) in [7]
(the extrapolation approximation) has order 2k. In ESERK methods,
the corresponding Sk,k has order k. Additionally, as it was commented
before, we should be very careful with instabilities if we try to employ a
higher-order method (k+1), with a S1,1 derived for a lower order scheme
(k).

– GBS-extrapolation algorithm is sequential, and therefore stages (a), (b),
(d), and (e) previously mentioned are useful to reduce the computational
cost. In our case, we have developed two types of codes, one sequential
and another in parallel. With the sequential codes, we can proceed in a
similar way as in [7]. But, in the case of the parallel algorithm, we will
directly go to the third stage (c).

Additionally, the way to calculateWk (work per unit step) will be different.

– The work for computing Sk,k (in the ESERK methods) can be computed
with Wk, the so-called work per unit step, which can be defined again as

Wk =
Ak

hk
(14)

where hk will be the length step (calculated with Equation (8)) if we
employ the k–th-order method, and Ak will be an estimation of the number
of function evaluations required to calculate Sk,k (as it was the case with
Tk,k).

Obviously, the way we calculate Ak for ESERK methods is quite different
to the way it was calculated for DIFEX1 and other extrapolation codes
for non-stiff ODEs. In our case, we need to take into account that the
first-order SERK approximation requires s calls of the function.

Therefore, for the sequential ESERK scheme of k−th order Ak can be
calculated recursively through

A1 = s
Ak = Ak−1 + ks,

(15)

i.e., Ak = sk(k+1)
2 .

As for the parallel ESERK codes (in practice they are a better option),
our idea is studying the general code using stage (c) previously described,
and we need to take care with the numerical reduction factor obtained by
parallelization in the calculus of Ak. Speed-up factors in Table 3, suggest
that Ak can be calculated as

Ak =
sk(k + 1)

2 sufk
, (16)

with suf3 = 1.8, suf4 = 2.1, suf5 = 2.4 and suf6 = 2.7.

19

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
1

10
2

10
3

10
4

Figure 4: Maximal absolute error versus CPU times in seconds for the second example using
ROCK4, IRKC, PIROCK, ESERK3, ESERK4, ESERK5 and ESERK6.

4.2. 2D-Brusselator example

The second example considered in this paper is a two-dimensional Brussela-
tor reaction-diffusion problem

∂u

∂t
= A+ u2v − (B + 1)u+ α

(

∂2u

∂x2
+

∂2u

∂y2

)

, (17)

∂v

∂t
= Bu− u2v + α

(

∂2v

∂x2
+

∂2v

∂y2

)

.

We solve this problem for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ t ≤ tend = 1, using A = 1.3,
B = 2 × 106, and α = 0.1, with periodic boundary conditions u(x + 1, y, t) =
u(x, y, t) = u(x, y + 1, t) and the initial condition chosen as in [3]:

u(x, y, 0) = 22y(1− y)3/2, v(x, y, 0) = 27x(1− x)3/2.

We discretized u, v in space with two N×N uniform meshes, where N = 500.
Thus, ρ ∼ 2.4×106 and ρD ∼ 8αN2 = 2×105 (the spectral radius of the diffusion
term).

In Fig. 4, we compare errors versus CPU times employed by the parallelized
versions of ESERK3, ESERK4, ESERK5, and ESERK6, and the well-known
sequential codes ROCK4, IRKC, and PIROCK (developed for diffusion-reaction
problems like this one).

As we can check, ESERK codes are very efficient compared to IRKC and
PIROCK for small tolerances, although those algorithms are specifically con-
structed for reaction-diffusion problems.

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

ESERK3 ESERK6

Figure 5: Step sizes for problem 2 with ESERK3, and ESERK6.

ESERK5 and ESERK6 are faster than ESERK3 and ESERK4 only when
errors ≃ O(10−6) − O(10−7) in this case, this is because the solution of this
problem is less stiff than in the previous one, and stiffness of the problem is
close to the origin.

For this tend, ROCK4 obtains a solution very fast in this numerical example,
but errors are clearly higher than prescribed tolerances. For tol = 10−7, 3×10−8,
errors > 5 × 10−6 (more than 100 times larger). This might happen because
ROCK4 has some problems with propagation of errors when the maximum
number of stages is utilized [9].

Additionally, ROCK4 is utilizing the maximum step allowed in time for many
of the tolerances, because the stiffness of the problem is very close to the origin,
and later solution is smoother. For longer tend values, ROCK4 would require
the maximum step during many steps, since the solution gets smoother. The
advantage of ESERK codes is their maximum length step in time is more than
40 times bigger than for ROCK4. Thus, when tend is bigger, they are able to
obtain accurate solutions faster.

Step sizes for problem 2 obtained through Eq. (8) are given in Fig. 5, with
tol = 10−6, for ESERK3 and ESERK6 (the new families), respectively. We can
check that step lengths are very stable, and there is a small number of rejections.

5. Conclusions

Two new whole families of ESERK schemes are derived, and analyzed, in this
work, with more than 100 new schemes, and up to several thousand of stages
in each family. For the first time, we also parallelized these codes: the four
families with orders from 3 to 6. These parallelized strategies allow to decrease
times significantly as it is explained theoretical and numerically, and therefore,
the new codes provide very good results in relation to other well-known ODE
solvers. These four parallel algorithms are now freely available in:

21

https://github.com/kleefeld80/ESERK3-6parallel.git and therefore anybody can
use them. The four algorithms are tested for several problems and compared
with other well-known codes obtaining very good results.

Finally, for the first time with these ESERK methods, it is discussed the idea
of combining all these families in one code. We numerically showed that the
optimum order of convergence usually depends on the prescribed tolerance (the
sought errors), but also the stiffness of the problem. Hence, the combination
of schemes with different order of convergence is specially interesting in such
kind of problems that ESERK algorithms solve. We also theoretically stated a
procedure to combine all these methods in one. We would like to continue with
this new line in the future, and check numerically the behavior of this idea.

Acknowledgements

The authors would like to thank Mamen Borrego and Luisa M. López for
their help to obtain the coefficients of the codes. The authors acknowledges
support from the University of Salamanca through its own “Programa Propio
I, Modalidad C2” grant 18.KB2B.

References

[1] A. Abdulle. Fourth order Chebyshev methods with recurrence relation. SIAM J.
Sci. Comput., 23(6):2041–2054, 2001.

[2] A. Abdulle and A. A. Medovikov. Second order Chebyshev methods based on
orthogonal polynomials. Numerische Mathematik, 90(1):1–18, 2001.

[3] A. Abdulle and G. Vilmart. PIROCK: a swiss-knife partitioned implicit–explicit
orthogonal Runge–Kutta–Chebyshev integrator for stiff diffusion–advection–
reaction problems with or without noise. Journal of Computational Physics,
242:869–888, 2013.

[4] R. C. Aiken. Stiff Computation. Oxford University Press, Inc., New York, NY,
USA, 1985.

[5] P. Bocher, J. I. Montijano, L. Rández, and M. Daele. Explicit Runge—Kutta
methods for stiff problems with a gap in their eigenvalue spectrum. J. Sci. Com-
put., 77(2):1055–1083, Nov. 2018.

[6] R. D’Ambrosio, E. Hairer, and C. Zbinden. G-symplecticity implies conjugate-
symplecticity of the underlying one-step method. BIT Numerical Mathematics,
53:867–872, 2013.

[7] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations
I (2nd Revised. Ed.): Nonstiff Problems. Springer-Verlag New York, Inc., NY,
USA, 1993.

[8] E. Hairer and G. Wanner. Solving ordinary differential equations. II: Stiff and
differential-algebraic problems. Springer, Berlin, 1996.

22

[9] W. H. Hundsdorfer and J. G. Verwer. Numerical solution of time-dependent
advection-diffusion-reaction equations. Springer, Berlin, Heidelberg, 2007.

[10] D. I. Ketcheson and U. bin Waheed. A comparison of high order explicit Runge-
Kutta, extrapolation, and deferred correction methods in serial and parallel.
CAMCoS, 9(2):175–200, 2014.

[11] B. Kleefeld and J. Mart́ın-Vaquero. SERK2v2: A new second-order stabilized
explicit Runge-Kutta method for stiff problems. Numerical Methods for Partial
Differential Equations, 29(1):170–185, 2013.

[12] B. Kleefeld and J. Mart́ın-Vaquero. SERK2v3: Solving mildly stiff nonlinear
partial differential equations. Journal of Computationald & Applied Mathematics,
299:194–206, 2016.

[13] V. I. Lebedev. A new method for determining the roots of polynomials of least
deviation on a segment with weight and subject to additional conditions. part I.
Russian Journal of Numerical Analysis and Mathematical Modelling, 8(3):195–
222, 1993.

[14] V. I. Lebedev and S. A. Finogenov. Solution of the parameter ordering problem
in Chebyshev iterative methods. USSR Computational Mathematics and Mathe-
matical Physics, 13(1):21–41, 1974.

[15] J. Mart́ın-Vaquero and B. Janssen. Second-order stabilized explicit Runge-Kutta
methods for stiff problems. Computer Physics Communications, 180(10):1802–
1810, 2009.

[16] J. Mart́ın-Vaquero, A. Q. M. Khaliq, and B. Kleefeld. Stabilized explicit Runge-
Kutta methods for multi-asset American options. Computers & Mathematics with
Applications, 67(6):1293–1308, 2014.

[17] J. Mart́ın-Vaquero and A. Kleefeld. ESERK5: A fifth-order extrapolated sta-
bilized explicit Runge-–Kutta method. Journal of Computational and Applied
Mathematics, 356:22–36, 2019.

[18] J. Mart́ın-Vaquero and B. Kleefeld. Extrapolated stabilized explicit Runge–Kutta
methods. Journal of Computational Physics, 326:141–155, 2016.

[19] A. A. Medovikov. High order explicit methods for parabolic equations. BIT
Numerical Mathematics, 38(2):372–390, 1998.

[20] V. Saul’yev, G. Tee, and E. Stewart, K.L. Integration of equations of parabolic
type by the method of nets.

[21] B. Sommeijer, L. Shampine, and J. Verwer. RKC: An explicit solver for parabolic
PDEs. Journal of Computational and Applied Mathematics, 88(2):315–326, 1997.

[22] M. Torrilhon and R. Jeltsch. Essentially optimal explicit Runge-Kutta meth-
ods with application to hyperbolic-parabolic equations. Numerische Mathematik,
106(2):303–334, 2007.

[23] J. G. Verwer. Explicit Runge-Kutta methods for parabolic partial differential
equations. Appl. Numer. Math., 22(1–3):359–379, 1996.

23

