000878668 001__ 878668
000878668 005__ 20240610121227.0
000878668 0247_ $$2doi$$a10.1016/j.intermet.2019.106680
000878668 0247_ $$2ISSN$$a0966-9795
000878668 0247_ $$2ISSN$$a1879-0216
000878668 0247_ $$2Handle$$a2128/25801
000878668 0247_ $$2WOS$$aWOS:000510971800010
000878668 037__ $$aFZJ-2020-02989
000878668 041__ $$aEnglish
000878668 082__ $$a670
000878668 1001_ $$0P:(DE-HGF)0$$aKrnel, M.$$b0
000878668 245__ $$aSperomagnetism and asperomagnetism as the ground states of the Tb-Dy-Ho-Er-Tm “ideal” high-entropy alloy
000878668 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000878668 3367_ $$2DRIVER$$aarticle
000878668 3367_ $$2DataCite$$aOutput Types/Journal article
000878668 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601567791_23283
000878668 3367_ $$2BibTeX$$aARTICLE
000878668 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878668 3367_ $$00$$2EndNote$$aJournal Article
000878668 520__ $$aWe address the nature of the collective magnetic state in an ideal high-entropy alloy (HEA), representing a magnetically concentrated system with all lattice sites occupied by localized magnetic moments and containing randomness and frustration due to chemical disorder. Being a “metallic glass on a topologically ordered lattice”, HEAs possess simultaneously the properties of an ordered crystal and an amorphous glass. The influence of this crystal-glass duality on the collective magnetic state was studied experimentally on a hexagonal Tb-Dy-Ho-Er-Tm (TDHET) HEA, composed of rare-earth (RE) elements with zero pair mixing enthalpies that assure completely random mixing of the elements and very similar atomic radii that minimize lattice distortions, representing a prototype of an ideal HEA. The TDHET HEA is characterized by probability distributions of the atomic moments , the exchange interactions , the magnetocrystalline anisotropy , and the dipolar interactions . Based on the measurements of the static and dynamic magnetization, the magnetization curves, the thermoremanent magnetization, the specific heat and the magnetoresistance, we found that the collective magnetic state of the TDHET is temperature-dependent, forming a speromagnetic (SPM) state in the temperature range between about 140 and 30 K and an asperomagnetic (ASPM) state below 20 K. In the intermediate temperature range between 30 and 20 K, a spin glass (SG) state is formed, representing a transition state between the speromagnetic and asperomagnetic states. The observed temperature evolution of the magnetic ground state in the TDHET HEA upon cooling in the sequence SPM→SG→ASPM is a result of temperature-dependent, competing magnetic interactions. The distribution of the exchange interactions shifts continuously on the axis from the high-temperature SPM-type with the average interaction biased towards a net negative value, , through the SG-type with , to the low-temperature ASPM-type with . This shift is a band-structure effect, closely linked with the crystallinity of the spin system, which the TDHET HEA shares with the topologically ordered crystals. The probability distributions , , and are, on the other hand, a consequence of chemical disorder, a property that the TDHET HEA shares with the amorphous magnets. Both features, the topologically ordered lattice and the amorphous-type chemical disorder essentially determine the magnetic state of an ideal, RE-based HEA.
000878668 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000878668 536__ $$0G:(DE-82)ZUK2-TvK$$aERS TvK (ZUK2) - Theodore von Kármán Fellowships (ZUK2-TvK)$$cZUK2-TvK$$x1
000878668 588__ $$aDataset connected to CrossRef
000878668 7001_ $$0P:(DE-HGF)0$$aVrtnik, S.$$b1
000878668 7001_ $$0P:(DE-HGF)0$$aJelen, A.$$b2
000878668 7001_ $$0P:(DE-HGF)0$$aKoželj, P.$$b3
000878668 7001_ $$0P:(DE-HGF)0$$aJagličić, Z.$$b4
000878668 7001_ $$0P:(DE-HGF)0$$aMeden, A.$$b5
000878668 7001_ $$0P:(DE-Juel1)130637$$aFeuerbacher, M.$$b6
000878668 7001_ $$0P:(DE-HGF)0$$aDolinšek, J.$$b7$$eCorresponding author
000878668 773__ $$0PERI:(DE-600)2028968-6$$a10.1016/j.intermet.2019.106680$$gVol. 117, p. 106680 -$$p106680 -$$tIntermetallics$$v117$$x0966-9795$$y2020
000878668 8564_ $$uhttps://juser.fz-juelich.de/record/878668/files/Hexagonal%20TbDyHoErTm%20-%20Intermetallics.pdf$$yPublished on 2019-12-18. Available in OpenAccess from 2021-12-18.
000878668 8564_ $$uhttps://juser.fz-juelich.de/record/878668/files/Hexagonal%20TbDyHoErTm%20-%20Intermetallics.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-12-18. Available in OpenAccess from 2021-12-18.
000878668 909CO $$ooai:juser.fz-juelich.de:878668$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130637$$aForschungszentrum Jülich$$b6$$kFZJ
000878668 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000878668 9141_ $$y2020
000878668 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000878668 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878668 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878668 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINTERMETALLICS : 2018$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000878668 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000878668 920__ $$lyes
000878668 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000878668 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000878668 9801_ $$aFullTexts
000878668 980__ $$ajournal
000878668 980__ $$aVDB
000878668 980__ $$aUNRESTRICTED
000878668 980__ $$aI:(DE-Juel1)PGI-5-20110106
000878668 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000878668 981__ $$aI:(DE-Juel1)ER-C-1-20170209