001     878675
005     20210130005723.0
024 7 _ |a 10.1016/j.scitotenv.2020.140955
|2 doi
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
024 7 _ |a 2128/25582
|2 Handle
024 7 _ |a pmid:32721609
|2 pmid
024 7 _ |a WOS:000579365600123
|2 WOS
037 _ _ |a FZJ-2020-02993
082 _ _ |a 610
100 1 _ |a Schmid, Christoph A. O.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a 52 years of ecological restoration following a major disturbance by opencast lignite mining does not reassemble microbiome structures of the original arable soils
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599568598_3001
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Opencast mining for lignite continuously creates areas of land that require restoration. Here we applied a chronosequence approach to investigate the development of soil bacterial communities during 52 years as influenced by the restoration process and subsequent changes in soil physico-chemical conditions starting from the initial reclamation of the sites. By comparison with the unaffected soils near the mine, we were able to address the question if soil bacterial communities have reached a steady state within 52 years, which is comparable to the original soil. Our study revealed three distinct phases of the restoration process, each with a specific bacterial community composition. The effect size of these changes was similar to the one observed for seasonal dynamics at our sites. At the beginning of the restoration process Flavobacteriaceae, Cytophagaceae and Sphingobacteriaceae were found as typical members of the bacterial community as well as Rhizobiales as a result of the cultivation of alfalfa on the restored plots. At later stage the families Peptostreptococcaceae, Desulfurellaceae as well as Streptomycetaceae increased in relative abundance and became dominant members of the bacterial community. Even though overall bacterial abundance and richness exhibited values comparable to the original soil already 5 years after the start of the restoration process, main responder analyses reveal differences in the bacterial community structure even 52 years after the start of the restoration process. Mostly Nitrospirae were reduced in abundance in the soils restored for 52 years compared to the original soils. To broaden the significance of our study, we compared our data bioinformatically with published results from other restored areas, which were previously affected by opencast mining. Despite different durations of the different restoration phase, we could observe a large degree of conformity when bacterial patterns of succession were compared indicating common modes of action of ecological restoration tools for bacterial communities.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reichel, Rüdiger
|0 P:(DE-Juel1)167469
|b 1
700 1 _ |a Schröder, Peter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brüggemann, Nicolas
|0 P:(DE-Juel1)142357
|b 3
700 1 _ |a Schloter, Michael
|0 0000-0003-1671-1125
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.scitotenv.2020.140955
|g Vol. 745, p. 140955 -
|0 PERI:(DE-600)1498726-0
|p 140955 -
|t The science of the total environment
|v 745
|y 2020
|x 0048-9697
856 4 _ |y Published on 2020-07-20. Available in OpenAccess from 2022-07-20.
|u https://juser.fz-juelich.de/record/878675/files/Schmid_etal_2020_STOTEN_postprint.pdf
856 4 _ |y Published on 2020-07-20. Available in OpenAccess from 2022-07-20.
|x pdfa
|u https://juser.fz-juelich.de/record/878675/files/Schmid_etal_2020_STOTEN_postprint.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878675
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167469
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142357
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-09
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2018
|d 2020-01-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI TOTAL ENVIRON : 2018
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-09
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-09
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21