000878677 001__ 878677
000878677 005__ 20210130005725.0
000878677 0247_ $$2doi$$a10.1002/mrm.28438
000878677 0247_ $$2ISSN$$a0740-3194
000878677 0247_ $$2ISSN$$a1522-2594
000878677 0247_ $$2Handle$$a2128/26312
000878677 0247_ $$2altmetric$$aaltmetric:89119636
000878677 0247_ $$2pmid$$apmid:32857424
000878677 0247_ $$2WOS$$aWOS:000563308400001
000878677 037__ $$aFZJ-2020-02995
000878677 082__ $$a610
000878677 1001_ $$0P:(DE-HGF)0$$aHetherington, Hoby P.$$b0$$eCorresponding author
000878677 245__ $$aDynamic B 0 shimming for multiband imaging using high order spherical harmonic shims
000878677 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2021
000878677 3367_ $$2DRIVER$$aarticle
000878677 3367_ $$2DataCite$$aOutput Types/Journal article
000878677 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606571650_29624
000878677 3367_ $$2BibTeX$$aARTICLE
000878677 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878677 3367_ $$00$$2EndNote$$aJournal Article
000878677 520__ $$aPurposeTo describe and implement a strategy for dynamic slice‐by‐slice and multiband B0 shimming using spherical harmonic shims in the human brain at 7T.TheoryFor thin axial slices, spherical harmonic shims can be divided into pairs of shims (z‐degenerate and non‐z‐degenerate) that are spatially degenerate, such that only ½ of the shims (non‐z‐degenerate) are required for single slice optimizations. However, when combined, the pairs of shims can be used to simultaneously generate the same in‐plane symmetries but with different amplitudes as a function of their z location. This enables multiband shimming equivalent to that achievable by single slice‐by‐slice optimization.MethodsAll data were acquired at 7T using a spherical harmonic shim insert enabling shimming up through 4th order with two additional 5th order shims (1st‐4th+). Dynamic shim updating was achieved using a 10A shim power supply with 2 ms ramps and constrained optimizations to minimize eddy currents.ResultsIn groups of eight subjects, we demonstrated that: 1) dynamic updating using 1st‐4th+ order shims reduced the SD of the B0 field over the whole brain from 32.4 ± 2.6 and 24.9 ± 2 Hz with 1st‐2nd and 1st‐4th+ static global shimming to 15.1 ± 1.7 Hz; 2) near equivalent performance was achieved when dynamically updating only the non‐z‐degenerate shims (14.3 ± 1.5 Hz), or when a using multiband shim factor of 2, MBs = 2, and all shims (14.4 ± 2.0 Hz).ConclusionHigh order spherical harmonics provide substantial improvements over static global shimming and enable dynamic multiband shimming with near equivalent performance to that of dynamic slice‐by‐slice shimming. This reduces distortion in echo planar imaging.
000878677 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000878677 588__ $$aDataset connected to CrossRef
000878677 7001_ $$0P:(DE-HGF)0$$aMoon, Chan Hong$$b1
000878677 7001_ $$0P:(DE-Juel1)165888$$aSchwerter, Michael$$b2
000878677 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b3
000878677 7001_ $$0P:(DE-HGF)0$$aPan, Jullie W.$$b4
000878677 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28438$$gp. mrm.28438$$n1$$p531-543$$tMagnetic resonance in medicine$$v85$$x1522-2594$$y2021
000878677 8564_ $$uhttps://juser.fz-juelich.de/record/878677/files/mrm.28438.pdf
000878677 8564_ $$uhttps://juser.fz-juelich.de/record/878677/files/Post-Print_Hetherington_MRM-2020.pdf$$yPublished on 2020-08-28. Available in OpenAccess from 2021-08-28.
000878677 909CO $$ooai:juser.fz-juelich.de:878677$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165888$$aForschungszentrum Jülich$$b2$$kFZJ
000878677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000878677 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000878677 9141_ $$y2020
000878677 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878677 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2018$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878677 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-02-26
000878677 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000878677 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878677 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000878677 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000878677 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000878677 980__ $$ajournal
000878677 980__ $$aVDB
000878677 980__ $$aUNRESTRICTED
000878677 980__ $$aI:(DE-Juel1)INM-4-20090406
000878677 980__ $$aI:(DE-Juel1)INM-11-20170113
000878677 980__ $$aI:(DE-Juel1)VDB1046
000878677 9801_ $$aFullTexts