001     878677
005     20210130005725.0
024 7 _ |a 10.1002/mrm.28438
|2 doi
024 7 _ |a 0740-3194
|2 ISSN
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a 2128/26312
|2 Handle
024 7 _ |a altmetric:89119636
|2 altmetric
024 7 _ |a pmid:32857424
|2 pmid
024 7 _ |a WOS:000563308400001
|2 WOS
037 _ _ |a FZJ-2020-02995
082 _ _ |a 610
100 1 _ |a Hetherington, Hoby P.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Dynamic B 0 shimming for multiband imaging using high order spherical harmonic shims
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606571650_29624
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PurposeTo describe and implement a strategy for dynamic slice‐by‐slice and multiband B0 shimming using spherical harmonic shims in the human brain at 7T.TheoryFor thin axial slices, spherical harmonic shims can be divided into pairs of shims (z‐degenerate and non‐z‐degenerate) that are spatially degenerate, such that only ½ of the shims (non‐z‐degenerate) are required for single slice optimizations. However, when combined, the pairs of shims can be used to simultaneously generate the same in‐plane symmetries but with different amplitudes as a function of their z location. This enables multiband shimming equivalent to that achievable by single slice‐by‐slice optimization.MethodsAll data were acquired at 7T using a spherical harmonic shim insert enabling shimming up through 4th order with two additional 5th order shims (1st‐4th+). Dynamic shim updating was achieved using a 10A shim power supply with 2 ms ramps and constrained optimizations to minimize eddy currents.ResultsIn groups of eight subjects, we demonstrated that: 1) dynamic updating using 1st‐4th+ order shims reduced the SD of the B0 field over the whole brain from 32.4 ± 2.6 and 24.9 ± 2 Hz with 1st‐2nd and 1st‐4th+ static global shimming to 15.1 ± 1.7 Hz; 2) near equivalent performance was achieved when dynamically updating only the non‐z‐degenerate shims (14.3 ± 1.5 Hz), or when a using multiband shim factor of 2, MBs = 2, and all shims (14.4 ± 2.0 Hz).ConclusionHigh order spherical harmonics provide substantial improvements over static global shimming and enable dynamic multiband shimming with near equivalent performance to that of dynamic slice‐by‐slice shimming. This reduces distortion in echo planar imaging.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Moon, Chan Hong
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schwerter, Michael
|0 P:(DE-Juel1)165888
|b 2
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 3
700 1 _ |a Pan, Jullie W.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1002/mrm.28438
|g p. mrm.28438
|0 PERI:(DE-600)1493786-4
|n 1
|p 531-543
|t Magnetic resonance in medicine
|v 85
|y 2021
|x 1522-2594
856 4 _ |u https://juser.fz-juelich.de/record/878677/files/mrm.28438.pdf
856 4 _ |y Published on 2020-08-28. Available in OpenAccess from 2021-08-28.
|u https://juser.fz-juelich.de/record/878677/files/Post-Print_Hetherington_MRM-2020.pdf
909 C O |o oai:juser.fz-juelich.de:878677
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165888
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-26
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2018
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-02-26
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21