Home > Publications database > Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: Current status and challenges > print |
001 | 878678 | ||
005 | 20230815122842.0 | ||
024 | 7 | _ | |a 10.1016/j.agrformet.2020.108088 |2 doi |
024 | 7 | _ | |a 0168-1923 |2 ISSN |
024 | 7 | _ | |a 1873-2240 |2 ISSN |
024 | 7 | _ | |a altmetric:84469597 |2 altmetric |
024 | 7 | _ | |a WOS:000556177600044 |2 WOS |
037 | _ | _ | |a FZJ-2020-02996 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Jonard, F. |0 P:(DE-Juel1)129478 |b 0 |
245 | _ | _ | |a Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: Current status and challenges |
260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1605709002_23293 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Es gibt kein Postprint dazu, dies ist das Einzige was vom Verlag zur Verfügung gestellt wird |
520 | _ | _ | |a Predictions of hydrological states and fluxes, especially transpiration, are poorly constrained in hydrological models due to large uncertainties in parameterization and process description. Novel technologies like remote sensing of sun-induced chlorophyll fluorescence (SIF)—which provides information from the photosynthetic apparatus—may help in constraining water cycle components. This paper discusses the nature of the plant physiological basis of the fluorescence signal and analyses the current literature linking hydrological states and fluxes to SIF. Given the connection between photosynthesis and transpiration, through the water use efficiency, SIF may serve as a pertinent constraint for hydrological models. The FLuorescence EXplorer (FLEX) satellite, planned to be launched in 2023, is expected to provide spatially high-resolution measurements of red and far-red SIF complementing the products from existing satellite missions and the high-temporal resolution products from upcoming geostationary missions. This new data stream may allow us to better constrain plant transpiration, assess the impacts of water stress on plants, and infer processes occurring in the root zone through the soil-plant water column. To make optimal use of this data, progress needs to be made in 1) our process representation of spatially aggregated fluorescence signals from spaceborne SIF instruments, 2) integration of fluorescence processes in hydrological models—particularly when paired with other satellite data, 3) quantifying the impact of soil moisture on SIF across scales, and 4) assessment of the accuracy of SIF measurements—especially from space. |
536 | _ | _ | |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |0 G:(DE-HGF)POF3-255 |c POF3-255 |x 0 |f POF III |
536 | _ | _ | |a DFG project 390732324 - EXC 2070: PhenoRob - Robotik und Phänotypisierung für Nachhaltige Nutzpflanzenproduktion |0 G:(GEPRIS)390732324 |c 390732324 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a De Cannière, S. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Brüggemann, N. |0 P:(DE-Juel1)142357 |b 2 |u fzj |
700 | 1 | _ | |a Gentine, P. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Short Gianotti, D. J. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Lobet, G. |0 P:(DE-Juel1)171180 |b 5 |u fzj |
700 | 1 | _ | |a Miralles, D. G. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Montzka, C. |0 P:(DE-Juel1)129506 |b 7 |
700 | 1 | _ | |a Pagán, B. R. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Rascher, U. |0 P:(DE-Juel1)129388 |b 9 |u fzj |
700 | 1 | _ | |a Vereecken, H. |0 P:(DE-Juel1)129549 |b 10 |u fzj |
773 | _ | _ | |a 10.1016/j.agrformet.2020.108088 |g Vol. 291, p. 108088 - |0 PERI:(DE-600)2012165-9 |p 108088 - |t Agricultural and forest meteorology |v 291 |y 2020 |x 0168-1923 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878678/files/Jonard%20AFM%202020.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878678/files/pagination_AGMET_108088.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878678/files/Jonard%20AFM%202020.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:878678 |p VDB |p VDB:Earth_Environment |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)129478 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)142357 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)171180 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129506 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)129388 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)129549 |
913 | 1 | _ | |a DE-HGF |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |v Terrestrial Systems: From Observation to Prediction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-15 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b AGR FOREST METEOROL : 2018 |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-15 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2020-01-15 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-15 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-01-15 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-15 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|