000878679 001__ 878679
000878679 005__ 20210130005726.0
000878679 0247_ $$2doi$$a10.3762/bjnano.11.109
000878679 0247_ $$2Handle$$a2128/25584
000878679 0247_ $$2pmid$$apmid:32874825
000878679 0247_ $$2WOS$$aWOS:000567855800001
000878679 0247_ $$2altmetric$$aaltmetric:93271419
000878679 037__ $$aFZJ-2020-02997
000878679 082__ $$a620
000878679 1001_ $$00000-0001-9945-8342$$aKhaydukov, Yury$$b0$$eCorresponding author
000878679 245__ $$aProximity effect in [Nb(1.5 nm)/Fe( x )]$_{10}$ /Nb(50 nm) superconductor/ferromagnet heterostructures
000878679 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2020
000878679 3367_ $$2DRIVER$$aarticle
000878679 3367_ $$2DataCite$$aOutput Types/Journal article
000878679 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599569444_31238
000878679 3367_ $$2BibTeX$$aARTICLE
000878679 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878679 3367_ $$00$$2EndNote$$aJournal Article
000878679 520__ $$aWe have investigated the structural, magnetic and superconduction properties of [Nb(1.5 nm)/Fe(x)]$_{10}$ superlattices deposited on a thick Nb(50 nm) layer. Our investigation showed that the Nb(50 nm) layer grows epitaxially at 800 °C on the Al2O3(1$\bar{1}$02) substrate. Samples grown at this condition possess a high residual resistivity ratio of 15–20. By using neutron reflectometry we show that Fe/Nb superlattices with x < 4 nm form a depth-modulated FeNb alloy with concentration of iron varying between 60% and 90%. This alloy has weak ferromagnetic properties. The proximity of this weak ferromagnetic layer to a thick superconductor leads to an intermediate phase that is characterized by a suppressed but still finite resistance of structure in a temperature interval of about 1 K below the superconducting transition of thick Nb. By increasing the thickness of the Fe layer to x = 4 nm the intermediate phase disappears. We attribute the intermediate state to proximity induced non-homogeneous superconductivity in the structure.
000878679 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x0
000878679 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000878679 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000878679 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x3
000878679 588__ $$aDataset connected to CrossRef
000878679 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000878679 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000878679 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000878679 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x0
000878679 693__ $$0EXP:(DE-MLZ)N-REX-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)N-REX-20140101$$6EXP:(DE-MLZ)NL1-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eNREX: Neutron reflectometer with X-ray option$$fNL1$$x1
000878679 7001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b1
000878679 7001_ $$00000-0001-5823-3665$$aGuasco, Laura$$b2
000878679 7001_ $$0P:(DE-HGF)0$$aMorari, Roman$$b3
000878679 7001_ $$0P:(DE-HGF)0$$aKim, Gideok$$b4
000878679 7001_ $$0P:(DE-HGF)0$$aKeller, Thomas$$b5
000878679 7001_ $$00000-0001-7433-4140$$aSidorenko, Anatolie$$b6
000878679 7001_ $$0P:(DE-HGF)0$$aKeimer, Bernhard$$b7
000878679 770__ $$aFunctional nanostructures for electronics, spintronics and sensors
000878679 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.11.109$$gVol. 11, p. 1254 - 1263$$p1254 - 1263$$tBeilstein journal of nanotechnology$$v11$$x2190-4286$$y2020
000878679 8564_ $$uhttps://juser.fz-juelich.de/record/878679/files/2190-4286-11-109.pdf$$yOpenAccess
000878679 8564_ $$uhttps://juser.fz-juelich.de/record/878679/files/2190-4286-11-109.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878679 909CO $$ooai:juser.fz-juelich.de:878679$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000878679 9101_ $$0I:(DE-HGF)0$$60000-0001-9945-8342$$aExternal Institute$$b0$$kExtern
000878679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b1$$kFZJ
000878679 9101_ $$0I:(DE-HGF)0$$60000-0001-5823-3665$$aExternal Institute$$b2$$kExtern
000878679 9101_ $$0I:(DE-HGF)0$$60000-0001-7433-4140$$aExternal Institute$$b6$$kExtern
000878679 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000878679 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000878679 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000878679 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x3
000878679 9141_ $$y2020
000878679 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878679 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878679 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2018$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878679 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-17
000878679 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878679 920__ $$lyes
000878679 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000878679 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000878679 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000878679 980__ $$ajournal
000878679 980__ $$aVDB
000878679 980__ $$aUNRESTRICTED
000878679 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000878679 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000878679 980__ $$aI:(DE-588b)4597118-3
000878679 9801_ $$aFullTexts