000878681 001__ 878681
000878681 005__ 20240712113046.0
000878681 0247_ $$2doi$$a10.1016/j.ssi.2019.03.017
000878681 0247_ $$2ISSN$$a0167-2738
000878681 0247_ $$2ISSN$$a1872-7689
000878681 0247_ $$2Handle$$a2128/25571
000878681 0247_ $$2WOS$$aWOS:000470951300008
000878681 037__ $$aFZJ-2020-02999
000878681 041__ $$aEnglish
000878681 082__ $$a530
000878681 1001_ $$0P:(DE-Juel1)165865$$aNaqash, Sahir$$b0$$eCorresponding author
000878681 245__ $$aImpact of sodium excess on electrical conductivity of Na3Zr2Si2PO12 + x Na2O ceramics
000878681 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000878681 3367_ $$2DRIVER$$aarticle
000878681 3367_ $$2DataCite$$aOutput Types/Journal article
000878681 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599550685_32472
000878681 3367_ $$2BibTeX$$aARTICLE
000878681 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878681 3367_ $$00$$2EndNote$$aJournal Article
000878681 520__ $$aIn order to industrialize NaSICON materials, modern fabrication techniques have to be used and one of those techniques for producing large-scale electrolyte sheets with 10–300 μm thickness is tape casting. Such technique however requires a sintering step at high temperatures leading to sodium depletion due to evaporation. The sodium loss becomes more significant for large-area and thin components. In order to investigate and compensate the sodium loss, NaSICON compositions with sodium excess were prepared, i.e. Na3Zr2Si2PO12 + x Na2O (0 ≤ x ≤ 0.2). The sodium loss can be reduced by applying a two-step sintering process (1250 °C for only 0.5 h and then at 1230 °C for 5 h). Several characterization techniques were used to analyze the resulting ceramics, the sodium depletion and its consequence on electrical conductivity. Chemical analyses indicated that all compositions were sodium deficient. Furthermore, the weight loss was investigated by thermogravimetric analysis confirming the reduction of weight loss by a factor 2 by applying a two-step sintering procedure with lower second sintering temperature. Initial thermodynamic calculations of the phase equilibria at high temperatures confirm the predominant evaporation of sodium. The highest electrical conductivity (1.6 ⋅ 10−3 S cm−1 at 25 °C) was measured for the composition showing the least sodium deficiency (x = 0.2). Furthermore, the activation energy of bulk and grain boundary conductivity decreased with increasing x in system.
000878681 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000878681 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x1
000878681 588__ $$aDataset connected to CrossRef
000878681 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000878681 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000878681 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x2
000878681 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b1
000878681 7001_ $$0P:(DE-Juel1)129813$$aYazhenskikh, Elena$$b2
000878681 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b3
000878681 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4
000878681 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2019.03.017$$gVol. 336, p. 57 - 66$$p57-66$$tSolid state ionics$$v336$$x0167-2738$$y2019
000878681 8564_ $$uhttps://juser.fz-juelich.de/record/878681/files/Impact%20of%20sodium%20excess%20on%20electrical%20conductivity%20of%20Na3Zr2Si2PO12%E2%80%AF%2B%E2%80%AFx%20Na2O%20ceramics-1.pdf$$yRestricted
000878681 8564_ $$uhttps://juser.fz-juelich.de/record/878681/files/Final%20Draft.pdf$$yPublished on 2019-03-23. Available in OpenAccess from 2021-03-23.
000878681 8564_ $$uhttps://juser.fz-juelich.de/record/878681/files/Impact%20of%20sodium%20excess%20on%20electrical%20conductivity%20of%20Na3Zr2Si2PO12%E2%80%AF%2B%E2%80%AFx%20Na2O%20ceramics-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878681 8564_ $$uhttps://juser.fz-juelich.de/record/878681/files/Final%20Draft.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-03-23. Available in OpenAccess from 2021-03-23.
000878681 909CO $$ooai:juser.fz-juelich.de:878681$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878681 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2019-12-21
000878681 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878681 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878681 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2018$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-21
000878681 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2019-12-21$$wger
000878681 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-21
000878681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165865$$aForschungszentrum Jülich$$b0$$kFZJ
000878681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b1$$kFZJ
000878681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129813$$aForschungszentrum Jülich$$b2$$kFZJ
000878681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b3$$kFZJ
000878681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000878681 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000878681 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x1
000878681 9141_ $$y2020
000878681 920__ $$lyes
000878681 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878681 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000878681 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x2
000878681 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x3
000878681 9801_ $$aFullTexts
000878681 980__ $$ajournal
000878681 980__ $$aVDB
000878681 980__ $$aUNRESTRICTED
000878681 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878681 980__ $$aI:(DE-82)080011_20140620
000878681 980__ $$aI:(DE-Juel1)IEK-12-20141217
000878681 980__ $$aI:(DE-Juel1)IEK-2-20101013
000878681 981__ $$aI:(DE-Juel1)IMD-1-20101013
000878681 981__ $$aI:(DE-Juel1)IMD-4-20141217
000878681 981__ $$aI:(DE-Juel1)IMD-2-20101013