Hauptseite > Publikationsdatenbank > Impact of sodium excess on electrical conductivity of Na3Zr2Si2PO12 + x Na2O ceramics > print |
001 | 878681 | ||
005 | 20240712113046.0 | ||
024 | 7 | _ | |2 doi |a 10.1016/j.ssi.2019.03.017 |
024 | 7 | _ | |2 ISSN |a 0167-2738 |
024 | 7 | _ | |2 ISSN |a 1872-7689 |
024 | 7 | _ | |2 Handle |a 2128/25571 |
024 | 7 | _ | |a WOS:000470951300008 |2 WOS |
037 | _ | _ | |a FZJ-2020-02999 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |0 P:(DE-Juel1)165865 |a Naqash, Sahir |b 0 |e Corresponding author |
245 | _ | _ | |a Impact of sodium excess on electrical conductivity of Na3Zr2Si2PO12 + x Na2O ceramics |
260 | _ | _ | |a Amsterdam [u.a.] |b Elsevier Science |c 2019 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1599550685_32472 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a In order to industrialize NaSICON materials, modern fabrication techniques have to be used and one of those techniques for producing large-scale electrolyte sheets with 10–300 μm thickness is tape casting. Such technique however requires a sintering step at high temperatures leading to sodium depletion due to evaporation. The sodium loss becomes more significant for large-area and thin components. In order to investigate and compensate the sodium loss, NaSICON compositions with sodium excess were prepared, i.e. Na3Zr2Si2PO12 + x Na2O (0 ≤ x ≤ 0.2). The sodium loss can be reduced by applying a two-step sintering process (1250 °C for only 0.5 h and then at 1230 °C for 5 h). Several characterization techniques were used to analyze the resulting ceramics, the sodium depletion and its consequence on electrical conductivity. Chemical analyses indicated that all compositions were sodium deficient. Furthermore, the weight loss was investigated by thermogravimetric analysis confirming the reduction of weight loss by a factor 2 by applying a two-step sintering procedure with lower second sintering temperature. Initial thermodynamic calculations of the phase equilibria at high temperatures confirm the predominant evaporation of sodium. The highest electrical conductivity (1.6 ⋅ 10−3 S cm−1 at 25 °C) was measured for the composition showing the least sodium deficiency (x = 0.2). Furthermore, the activation energy of bulk and grain boundary conductivity decreased with increasing x in system. |
536 | _ | _ | |0 G:(DE-HGF)POF3-131 |a 131 - Electrochemical Storage (POF3-131) |c POF3-131 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-HGF)POF3-113 |a 113 - Methods and Concepts for Material Development (POF3-113) |c POF3-113 |f POF III |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | 2 | 7 | |0 V:(DE-MLZ)SciArea-180 |2 V:(DE-HGF) |a Materials Science |x 0 |
650 | 2 | 7 | |0 V:(DE-MLZ)SciArea-110 |2 V:(DE-HGF) |a Chemistry |x 1 |
650 | 2 | 7 | |0 V:(DE-MLZ)SciArea-240 |2 V:(DE-HGF) |a Crystallography |x 2 |
700 | 1 | _ | |0 P:(DE-Juel1)129667 |a Tietz, Frank |b 1 |
700 | 1 | _ | |0 P:(DE-Juel1)129813 |a Yazhenskikh, Elena |b 2 |
700 | 1 | _ | |0 P:(DE-Juel1)129765 |a Müller, Michael |b 3 |
700 | 1 | _ | |0 P:(DE-Juel1)161591 |a Guillon, Olivier |b 4 |
773 | _ | _ | |0 PERI:(DE-600)1500750-9 |a 10.1016/j.ssi.2019.03.017 |g Vol. 336, p. 57 - 66 |p 57-66 |t Solid state ionics |v 336 |x 0167-2738 |y 2019 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878681/files/Impact%20of%20sodium%20excess%20on%20electrical%20conductivity%20of%20Na3Zr2Si2PO12%E2%80%AF%2B%E2%80%AFx%20Na2O%20ceramics-1.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878681/files/Final%20Draft.pdf |y Published on 2019-03-23. Available in OpenAccess from 2021-03-23. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878681/files/Impact%20of%20sodium%20excess%20on%20electrical%20conductivity%20of%20Na3Zr2Si2PO12%E2%80%AF%2B%E2%80%AFx%20Na2O%20ceramics-1.pdf?subformat=pdfa |x pdfa |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878681/files/Final%20Draft.pdf?subformat=pdfa |x pdfa |y Published on 2019-03-23. Available in OpenAccess from 2021-03-23. |
909 | C | O | |o oai:juser.fz-juelich.de:878681 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)165865 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129667 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129813 |a Forschungszentrum Jülich |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129765 |a Forschungszentrum Jülich |b 3 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)161591 |a Forschungszentrum Jülich |b 4 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-131 |1 G:(DE-HGF)POF3-130 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Speicher und vernetzte Infrastrukturen |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
913 | 1 | _ | |0 G:(DE-HGF)POF3-113 |1 G:(DE-HGF)POF3-110 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |v Methods and Concepts for Material Development |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)1230 |2 StatID |a DBCoverage |b Current Contents - Electronics and Telecommunications Collection |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2019-12-21 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0530 |2 StatID |a Embargoed OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b SOLID STATE IONICS : 2018 |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2019-12-21 |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |d 2019-12-21 |w ger |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2019-12-21 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
920 | 1 | _ | |0 I:(DE-82)080011_20140620 |k JARA-ENERGY |l JARA-ENERGY |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-2-20101013 |k IEK-2 |l Werkstoffstruktur und -eigenschaften |x 3 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a I:(DE-82)080011_20140620 |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
980 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|