001     878681
005     20240712113046.0
024 7 _ |2 doi
|a 10.1016/j.ssi.2019.03.017
024 7 _ |2 ISSN
|a 0167-2738
024 7 _ |2 ISSN
|a 1872-7689
024 7 _ |2 Handle
|a 2128/25571
024 7 _ |a WOS:000470951300008
|2 WOS
037 _ _ |a FZJ-2020-02999
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)165865
|a Naqash, Sahir
|b 0
|e Corresponding author
245 _ _ |a Impact of sodium excess on electrical conductivity of Na3Zr2Si2PO12 + x Na2O ceramics
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1599550685_32472
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a In order to industrialize NaSICON materials, modern fabrication techniques have to be used and one of those techniques for producing large-scale electrolyte sheets with 10–300 μm thickness is tape casting. Such technique however requires a sintering step at high temperatures leading to sodium depletion due to evaporation. The sodium loss becomes more significant for large-area and thin components. In order to investigate and compensate the sodium loss, NaSICON compositions with sodium excess were prepared, i.e. Na3Zr2Si2PO12 + x Na2O (0 ≤ x ≤ 0.2). The sodium loss can be reduced by applying a two-step sintering process (1250 °C for only 0.5 h and then at 1230 °C for 5 h). Several characterization techniques were used to analyze the resulting ceramics, the sodium depletion and its consequence on electrical conductivity. Chemical analyses indicated that all compositions were sodium deficient. Furthermore, the weight loss was investigated by thermogravimetric analysis confirming the reduction of weight loss by a factor 2 by applying a two-step sintering procedure with lower second sintering temperature. Initial thermodynamic calculations of the phase equilibria at high temperatures confirm the predominant evaporation of sodium. The highest electrical conductivity (1.6 ⋅ 10−3 S cm−1 at 25 °C) was measured for the composition showing the least sodium deficiency (x = 0.2). Furthermore, the activation energy of bulk and grain boundary conductivity decreased with increasing x in system.
536 _ _ |0 G:(DE-HGF)POF3-131
|a 131 - Electrochemical Storage (POF3-131)
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-113
|a 113 - Methods and Concepts for Material Development (POF3-113)
|c POF3-113
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|a Materials Science
|x 0
650 2 7 |0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|a Chemistry
|x 1
650 2 7 |0 V:(DE-MLZ)SciArea-240
|2 V:(DE-HGF)
|a Crystallography
|x 2
700 1 _ |0 P:(DE-Juel1)129667
|a Tietz, Frank
|b 1
700 1 _ |0 P:(DE-Juel1)129813
|a Yazhenskikh, Elena
|b 2
700 1 _ |0 P:(DE-Juel1)129765
|a Müller, Michael
|b 3
700 1 _ |0 P:(DE-Juel1)161591
|a Guillon, Olivier
|b 4
773 _ _ |0 PERI:(DE-600)1500750-9
|a 10.1016/j.ssi.2019.03.017
|g Vol. 336, p. 57 - 66
|p 57-66
|t Solid state ionics
|v 336
|x 0167-2738
|y 2019
856 4 _ |u https://juser.fz-juelich.de/record/878681/files/Impact%20of%20sodium%20excess%20on%20electrical%20conductivity%20of%20Na3Zr2Si2PO12%E2%80%AF%2B%E2%80%AFx%20Na2O%20ceramics-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/878681/files/Final%20Draft.pdf
|y Published on 2019-03-23. Available in OpenAccess from 2021-03-23.
856 4 _ |u https://juser.fz-juelich.de/record/878681/files/Impact%20of%20sodium%20excess%20on%20electrical%20conductivity%20of%20Na3Zr2Si2PO12%E2%80%AF%2B%E2%80%AFx%20Na2O%20ceramics-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/878681/files/Final%20Draft.pdf?subformat=pdfa
|x pdfa
|y Published on 2019-03-23. Available in OpenAccess from 2021-03-23.
909 C O |o oai:juser.fz-juelich.de:878681
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165865
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129667
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129813
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129765
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161591
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-131
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)1230
|2 StatID
|a DBCoverage
|b Current Contents - Electronics and Telecommunications Collection
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2019-12-21
915 _ _ |0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
915 _ _ |0 StatID:(DE-HGF)0530
|2 StatID
|a Embargoed OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SOLID STATE IONICS : 2018
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2019-12-21
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2019-12-21
|w ger
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2019-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 2
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21